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a b s t r a c t

This paper studies model selection methods in the presence of nonstationarity. We focus on the Bayesian
model selection rule and compare it with other criteria that are frequently used in econometric practice.
First, we derive each of these criteria in the presence of nonstationarity. In particular, we study the
Bayesian model selection rule in detail and derive three alternative forms of it in the presence of
nonstationarity. One important feature of the Bayesian model selection criterion (BMSC) is that BMSC
gives differentweights to the stationary and nonstationary components of amodelwhile the other criteria
do not. This feature of BMSC is a desirable property for a model selection rule in the presence of possible
nonstationarity. Second, we compare these criteria with regard to parsimony and power. We have found
that BMSC shows the highest parsimony, AIC is the second, and Cp and R̄2, having the same level of
parsimony, are the third. With regard to power, the order is not clearly established. However, for the
size adjusted power BMSC becomes dominant as the sample size increases. Without size adjustment the
order in the power is exactly the opposite to that in parsimony. Also, we find that BMSC is a consistent
selection rule while the other criteria are not. Third, we consider four different cases of practical interest
for which BMSC with some of the other criteria is applicable. We discuss how our BMSC can be used in
these cases of practical interest. Results of an extensive Monte Carlo simulation for models in these four
cases show that overall the BMSC outperforms other criteria.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The model selection problem has been an important subject in
econometrics as well as in many other areas of science. Aside from
theoretical a priori considerations in model building, the subject
of how well a model fits the data is an important guide to model
selection. Sims (1988), Phillips (1996) and Phillips and Ploberger
(1996) have noted that econometric model selection strategy
needs to be reconsidered in the presence of nonstationarity. This
paper reexamines and redevelops model selection criteria in the
presence of nonstationarity.

Several model selection methods have been studied in the
literature. Theil (1961) proposed using the adjusted R2; Akaike
(1973) provided an information criterion (AIC); Schwarz (1978)
proposed a Bayesian information criterion; Mallows (1973)
proposed a prediction criterion (Cp). Other criteria in the literature
include Hannan and Quinn (1979)’s criterion, Geweke and
Meese (1981)’s criterion. Cavanaugh (1999)’s Kullback Information
criterion, and the deviance information criterion of Spiegelhalter
et al. (2002). Also, Tsay (1984), Hurvich and Tsai (1989) and
Pötscher (1989) have studied model selection methods in times
series models. Recently, the model selection problem has been
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extended tomoment selection as in Andrews (1999), Andrews and
Lu (2001) and Hong et al. (2003). These model selection methods
are concerned with parsimony, as was stressed in Zellner et al.
(2001), as well as accuracy or power in choosing models.

In this paper we consider four different approaches to
model selection that are frequently used in econometric practice
including the Bayesian approach, AIC, Mallow’s Cp, and R̄2. We
derive each of these criteria in the presence of nonstationarity.
In particular, we study the Bayesian model selection rule in
detail and derive three alternative forms of it in the presence
of nonstationarity. One of the three forms of the Bayesian
model selection method is the same as PIC in Phillips (1996).
One important feature of the Bayesian model selection criterion
(BMSC) is that BMSC gives different weights to the stationary and
nonstationary components of a model while the other criteria
do not. This feature of BMSC is a desirable property for a model
selection rule in the presence of possible nonstationarity. It implies
among other things that different levels of parsimony have to
be applied to the stationary and nonstationary components of a
model. The fact that a nonstationary component has to be given
a different weight from the one given to a stationary component is
noted by Sims (1988), Phillips (1996), Phillips and Ploberger (1996)
and Kim (1998).

In this paper we also compare the derived criteria with regard
to parsimony and power. A model selection method implicitly
or explicitly employs parsimony. That is, if two models fit the
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data equally well, a simpler model is preferred, as is noted by
Zellner et al. (2001). Based on some theoretical analysis, we have
found that BMSC shows the highest parsimony, AIC the second,
and Cp and R̄2, having the same level of parsimony, are third. This
theoretical finding is confirmed by our Monte Carlo study. On the
other hand, accuracy of a model selection criterion is investigated
by evaluating power values of the criterion, where the power is
defined as the probability of selecting a model when that model
is true. With regard to the power of the criteria the order is not
clearly established. However, for the size adjusted power, the
BMSC becomes dominant as the sample size increases. Without
size adjustment, on the other hand, the order in the power is
exactly opposite to that in parsimony. These two findings imply
that the relatively higher power values of AIC , Cp and R̄2 criteria
are obtained by sacrificing parsimony. They further imply that the
AIC , Cp and R̄2 criteria may overfit the model by allowing excessive
levels of the Type I error. We also find that BMSC is a consistent
selection rule while the other criteria are not. Monte Carlo study
of a few interesting cases reveals that the BMSC has better power
properties than the other competing criteria.

We consider four different cases of practical interest for which
BMSC with some or all of the other criteria under study is
applicable: (i) decision between I(1) and I(0); (ii) determination
of the number of structural breaks in a model with trend breaks;
(iii) a vector error correction model and determination of the
rank of cointegrating relations; (iv) order determination in an
autoregression. We discuss how BMSC can be applied for these
problems. Also, we note that the traditional Schwarz BIC is
either an incorrect or an inappropriate BIC in the presence of
nonstationarity.

The paper is organized as follows. Section 2 examines each of
the model selection criteria of practical use in the presence of
nonstationarity. Section 3 compares the model selection criteria
in parsimony and power. Section 4 studies four different cases of
practical interest for which themodel selectionmethods discussed
in the paper are applicable. We perform Monte Carlo simulation
to examine finite sample performance of the model selection
methods in those cases.

2. Model selection rules in general frameworks

Let (Ω,F , P) be a probability space and {Ft}t≥0 be an
increasing family of sub σ -fields of F . Let {yt(·)} be a stochastic
process defined on (Ω,F , P) that is adapted toFt . Denote by Yn =

{y}nt=1, the n-segment of {yt}. Assume that Yn has a distribution
function Pn(θ, Yn) whose density is denoted by pn(θ, Yn) for θ ∈

Rp. Let (V,G, Pν) be a probability space on which θ is defined.
A family M consists of candidate models for Yn in the presence

of uncertainty regarding the true model. A model mi ∈ M is
associated with a parameter space Θ i of dimension ki for i ∈ I
where I = {1, . . . , I} for a finite positive integer I . Assume that
for each mi a family P i

n(θ
i, Yn) of distribution functions with a

family of densities pin(θ
i, Yn) is defined on the measurable space

(V,G)× (Ω,F ).

2.1. Bayesian information criterion

2.1.1. A general framework
A natural approach to model selection in the Bayesian frame-

work is to choose a modelmi for which the posterior probability is
the largest. Thus, let Pr(mi|Yn) be the posterior probability that mi
is true. By the Bayes’ rule

Pr(mi|Yn) =
pn(Yn|mi) Pr(mi)

j∈I

pn(Yn|mj) Pr(mj)
(2.1)

where Pr(mi) is the prior probability thatmi is true. Also, pn(Yn|mj)
is the marginalized likelihood obtained frommarginalization with
respect to θ j of the likelihood pjn(θ j, Yn) = pn(Yn|θ

j,mj) for model
mj:

pn(Yn|mj) =


pn(Yn|θ

j,mj)π(θ
j
|mj)dθ j

= Ej[pn(Yn|θ
j)], (2.2)

where π(θ j|mj) is the prior density associated with the model mj.
If we further assume that Pr(mj) is the same for all j, the model
selection rule is to choose mi for which Ei[pn(Yn|θ

i)] is the largest.
Phillips (1996) provides another dimension of justification for the
Bayesian approach for model selection based on the notion of a
Bayesian model measure.

2.1.2. Approximations
Criterion (2.2) involves computation of an integral of pn × π

with respect to θ j in Rpj . Certainly this computation is not an easy
task even with a very fast computer. Also, the choice of the range
of θ in the computation is a non-trivial problem. In the following
we provide an approximation to the marginal likelihood pn(Yn|mj)
in (2.2) that is valid for a large sample. The approximation allows
us to derive Bayesian criteria that are computationally simple to
handle and yet have sound theoretical justification.

Let N(θ̂n, δn), n = 1, . . . ,∞, be such that

N(θ̂n, δn) = {θ : |θ1 − θ̂n1|
2/δ2n1 + · · · + |θk − θ̂nk|

2/δ2nk < 1} (2.3)

where θ̂ni is the ith element of θ̂n, the maximum likelihood estima-
tor (MLE) of θ based on Yn; δn = (δn1, . . . , δnk)

′ is a k-vector of real
numbers; | · | denotes the usual Euclidean norm. Thus, N(θ̂n, δn)
is a neighborhood around θ̂n whose area is determined by δn. We
consider a sequence {δn} such that δn becomes smaller and smaller
as n ↗ ∞, so that the neighborhood N(θ̂n, δn) shrinks as n gets
larger. Also, note that the rate of shrinkage of δni can be different
across different i’s.

Assume that the log-likelihood Ln(θ) = log pn(θ), for pn(θ) =

pn(θ, Yn), is twice differentiablewith respect to θ in


∞

n=1 N(θ̂n, δn).
Denote by L′′

n(θ) the second derivative of the log-likelihood. Also,
denote by ∥ · ∥ the matrix norm: for an m × m matrix A, ∥A∥ =

sup |Ax|/|x|, where |Ax| is the usual Euclidean norm on Rm.
Now, consider the following conditions (C1) and (C2).

(C1) (a) Let Mn(θ̂n(ω), δn) = supθ∈N(θ̂n,δn) ∥[L
′′
n(θ) − L′′

n(θ̂n)][L
′′
n

(θ̂n)]
−1

∥. There exists a positive sequence {δn}
∞

n=1 such that limn↗∞

P[Mn(θ̂n(ω), δn) < ϵ] = 1 for each ϵ > 0.

(b) Let Σn = [−L′′
n(θ̂n)]

−1. For δn satisfying (C1) (a) the absolute
value of each element of the vector Σ−1/2

n δn tends to infinity in
P-probability as n goes to infinity.
(C2) Let πn(θ |Yn) be the posterior formed from the likelihood pn and
a prior π . For δn satisfying (C1),
Θ\N(θ̂n,δn)

πn(θ |Yn)dθ −→ 0 (2.4)

in P-probability as n goes to infinity i.e., θ concentrates in N(θ̂n, δn)
in P-probability as n goes to infinity.

Conditions (C1) and (C2) cover a very wide variety of models
containing nonstationary components. The two conditions (C1)
and (C2) combined with a continuity condition for a prior π
are sufficient for the posterior πn(θ |Yn) to be asymptotically
normal in the presence of possible nonstationarity, as is studied
in Kim (1998). The shrinking neighborhood N(θ̂n, δn) above is the
key device handling the problem of possible nonstationarity in
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