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a b s t r a c t

In this paper a unified finite element methodology based on gradient-elasticity is proposed for both
two- and three-dimensional problems, along with some considerations about the best integration rules
to be used and a comprehensive convergence study. From the convergence study it has emerged that
for both two and three-dimensional problems, the implemented elements show a convergence rate
virtually equal to the corresponding theoretical values. Recommendations on optimal element size are
also provided. Furthermore, the ability of the proposed methodology to remove singularities in statics
has been demonstrated through a couple of examples, in both two and three dimensions.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Classical continuum theories are used to solve various funda-
mental engineering problems and applications. Even if these theo-
ries are capable of solving problems in which the scale of the
unknowns is appreciable by the human eye, they have been used
to characterise phenomena at a very small (atomistic) as well as
extremely big (astronomic) scale. Furthermore, classical elasticity
has also been recently applied to describe deformation problems
at the micron and nano-scale.

Experimental observations have suggested that, at these two
last scales of observation, classical continuum theories fail in the
accurate description of deformation phenomena. In particular,
classical theories produce singularities in the strain and stress
fields, for example in correspondence of crack tips and dislocation
lines. Furthermore, they are not able to capture size effects, even if
the influence of size effects increases with the decrease of the
component size.

The failure of classical continuum theories in the description of
the above problems is linked to the absence of an internal length in
the constitutive equations, representative of the underlying
microstructure. To overcome the previously described deficiencies,
it has been proposed to enrich the constitutive equations, through
the introduction of high-order gradients of particular state variable
(e.g. strains or stresses), accompanied by internal length parame-
ters (see [1] for an overview).

The idea of using gradient elasticity to describe the mechanical
behaviour of materials and structures dates back to the second half
of the 19th century; however, the purpose of these theories has
changed significantly over the years (a comprehensive overview
of the history of gradient elasticity can be found in [1]).

Despite its ability to overcome the deficiencies of classical
elasticity in the solution of different problems, gradient elasticity
has not found a significant diffusion in practical applications yet.
One of the principal reasons is its non-trivial finite element imple-
mentation, mainly related to the continuity requirements imposed
on the discretisation. In fact, while the standard equations of solid
mechanics are usually second order partial differential equations
(p.d.e.), the governing equations of gradient elasticity are typically
fourth-order p.d.e.; this means that the discretisation of the
gradient elasticity equations requires at least C1-continuous shape
functions, instead of the usual C0-continuous shape functions,
which cannot be straightforwardly defined and implemented in a
finite element methodology.

There are two main approaches followed to implement gradient
elasticity into a finite element methodology (for a more detailed
overview see [1,2]). The first one comprehends approaches that
leave the continuum mechanics equations intact, by using Mesh-
less methods [3–11], Penalty methods [12–14], Hermitian finite
elements [15–18], next nearest neighbour interaction (instead of
the simpler nearest neighbour interaction used in the standard
finite element software) [19], etc. The second one includes
approaches that transform the governing equations, in order to
obtain less demanding continuity requirements; among these is
the Ru-Aifantis theorem [20] which splits the original fourth-
order p.d.e. in two uncoupled sets of second-order p.d.e.
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In this paper, we build on the finite element technology devel-
oped by [2,21] in that we use the aforementioned Ru-Aifantis theo-
rem as a starting point to develop a straightforward C0-continuous
implementation. The work of these earlier papers is extended from
2D to 3D and higher-order elements, whilst also a comprehensive
study of optimal numerical integration rules is provided and
in-depth convergence studies have been carried out. Thus, recom-
mendations on element types and sizes can now be made.

While in Section 2 the Ru-Aifants theory, implemented in the
proposed methodology, is briefly reviewed, in Section 3 an effec-
tive C0 finite element implementation of this theory is described.
Section 4 provides details about the best integration rules to use
for each of the different implemented finite elements, whilst in
Section 5 the convergence behaviours of the different implemented
elements are compared and analysed for problems without singu-
larities and in Section 6 the same has been done for a problem
characterised by the presence of a singularity. Recommendations
on optimal element size are also provided. In Section 7 original
results, obtained by applying the proposed methodology to two
different problems, are presented in order to demonstrate the abil-
ity of the methodology to remove singularities from the stress field
for both two- and three-dimensional problems.

2. Ru-Aifantis theory of gradient elasticity

At the beginning of the 1990s, Aifantis and coworkers proposed
to enrich the constitutive relations of classical elasticity by means
of the Laplacian of the strain as [20,22,23]

rij ¼ Cijklðekl � ‘2ekl;mmÞ ð1Þ
where rij and ekl are, respectively, the stress and strain tensor, Cijkl is
the constitutive tensor and ‘ is a length scale parameter. The related
equilibrium equations are

Cijklðuk;jl � ‘2uk;jlmmÞ þ bi ¼ 0 ð2Þ
where uk is the displacement field and bi are the body forces.

In a later work [20], Ru and Aifantis proposed an operator
split, which allows the solution of the fourth-order equilibrium
Eq. (2) as a decoupled sequence of two sets of second-order
p.d.e., that is

Cijkluc
k;jl þ bi ¼ 0 ð3Þ

followed by the following reaction–diffusion equation

ug
k � ‘2ug

k;mm ¼ uc
k ð4Þ

that represents the relation between the local displacements uc
i ,

obtained by solving the equations of classical elasticity Eq. (3) (car-
rying for this reason the superscript c), and the non-local displace-
ments ug

i , affected by the gradient activity (superscript g), which are
the same displacements appearing in Eq. (2).

Substituting Eq. (4) into Eq. (3), the original Eq. (2) are recov-
ered and imposing suitable boundary conditions the solution of
Eqs. (3) and (4) coincides with that of the original Eq. (2). Never-
theless, the most interesting aspect of Eqs. (3) and (4) is their
uncoupled format, which significantly simplifies both the analyti-
cal and numerical solution of the system of equations.

The first Ru-Aifantis approach introduces the gradient-
enrichment in terms of displacements, as given in Eq. (4), but
through a simple differentiation it is also possible to express the
gradient-enrichment in terms of strains [2,24,25], that is

e g
kl � ‘2e g

kl;mm ¼ eckl ¼
1
2
ðuc

k;l þ uc
l;kÞ ð5Þ

or stresses as [2,26]

r g
ij � ‘2r g

ij;mm ¼ Cijkluc
k;l ð6Þ

3. Finite element implementation

As briefly explained in Section 2 and in more details in [1], the
Ru-Aifantis theorem consists in solving two uncoupled sets of
second-order p.d.e. instead of the original fourth-order p.d.e.,
which significantly simplifies the solution of the problem. From
now on matrix–vector notation is adopted, instead of the index
notation used in Section 2.

The first step of the Ru-Aifantis theory consists in determining
the local displacements uc by solving the second-order p.d.e. of
classical elasticity:

LTCLuc þ b ¼ 0 ð7Þ

where b are the body forces, C is the constitutive matrix, while the
derivative operator L is defined as

L ¼
@
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The continuum local displacements uc ¼ uc
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expressed in terms of the nodal local displacements

dc ¼ dc
1x; d
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h iT
through the relation uc ¼ Nud

c ,

where Nu is the matrix which collects the traditional shape func-
tions Ni and can be written as:

Nu ¼
N1 0 0 N2 0 0 . . .

0 N1 0 0 N2 0 . . .

0 0 N1 0 0 N2 . . .

2
64

3
75 ð9Þ

Considering the finite element discretisation just described and
integrating by parts, the weak form of Eq. (7) readsZ
X
BT
uCBudX dc � Kdc ¼ f ð10Þ

where K is the stiffness matrix, Bu ¼ LNu is the strain–displacement
matrix and f is the force vector, where the contributions of both the
body forces and the external tractions are included.

At this point, knowing the local displacements uc from the pre-
vious step, it is possible to evaluate the stress field by solving the
second set of equations (second step):

ðr g � ‘2r2r gÞ ¼ CLuc ð11Þ
where r g is the non-local stress tensor and the derivative operator
r is defined as

r ¼
@
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@
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@
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Considering the weak form of Eq. (11) and integrating by parts,
we obtainZ
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