Journal of Econometrics 166 (2012) 237-246

journal homepage: www.elsevier.com/locate/jeconom -

Contents lists available at SciVerse ScienceDirect

Journal of Econometrics

Bayesian hypothesis testing in latent variable models”

Yong Li?, Jun YuP*

2 Sun Yat-Sen Business School, Sun Yat-Sen University, Guangzhou, 510275, China

b Sim Kee Boon Institute for Financial Economics, School of Economics and Lee Kong Chian School of Business, Singapore Management University, 90 Stamford Road,

Singapore 178903, Singapore

ARTICLE INFO ABSTRACT

Article history:

Received 17 October 2010
Received in revised form

8 August 2011

Accepted 21 September 2011
Available online 7 October 2011

Hypothesis testing using Bayes factors (BFs) is known not to be well defined under the improper prior. In
the context of latent variable models, an additional problem with BFs is that they are difficult to compute.
In this paper, a new Bayesian method, based on the decision theory and the EM algorithm, is introduced
to test a point hypothesis in latent variable models. The new statistic is a by-product of the Bayesian
MCMC output and, hence, easy to compute. It is shown that the new statistic is appropriately defined

under improper priors because the method employs a continuous loss function. In addition, it is easy
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to interpret. The method is illustrated using a one-factor asset pricing model and a stochastic volatility
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1. Introduction

Latent variable models have been widely used in economics,
finance, and many other disciplines. They are appealing from both
the practical and the theoretical perspectives. One advantage of
using latent variables is that it reduces the dimensionality of data.
A well known example is the factor models. For example, in the
arbitrage pricing theory (APT) of Ross (1976), and Roll and Ross
(1980), returns of an infinite sequence of risky assets are assumed
to depend linearly on a set of common factors. Another example is
the stochastic volatility (SV) model that has been proven to be an
effective alternative to ARCH-type models; see Shephard (2005).
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The SV model is a special case of a more general class of models
known as the state-space (SS) models. While statistical analysis of
the linear Gaussian SS model is straightforward with the help of
the Kalman filter technique, statistical analysis of a nonlinear or
non-Gaussian SS model is much more challenging than its linear
Gaussian counterpart.

For many latent variable models, it is difficult to use traditional
frequentist estimation and inferential methods. The main reasons
are as follows. First, for some latent variable models, such as
the nonlinear or non-Gaussian SS models, the log-likelihood
function of the observed variables (termed the observed data
log-likelihood) often involves integrals which are not analytically
tractable. When the dimension of the integrals is high, the classical
numerical techniques may fail to work, and hence, the likelihood
function becomes difficult to evaluate accurately. Consequently,
the maximum likelihood (ML) method and all the tests based on
ML, are difficult to use.

Second, for dynamic latent variable models, the frequentist in-
ferential methods are almost always based on the asymptotic the-
ory. The validity of the classical asymptotic theory requires a set
of regularity conditions that may be too strong for economic data,
to hold. For example, a regularity condition often used is station-
arity. This condition may not be realistic for the macroeconomic
and financial time series. In the context of a particular class of la-
tent variable models, Chang et al. (2009) discussed the impact of
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nonstationarity on the asymptotic distribution of the ML estima-
tor. In the case of general hidden Markov models, the asymptotic
properties of the ML estimate remain largely unknown, with the
exception of consistency which was recently developed in Douc
etal. (2011).

Third, for the asymptotic theory to work well in finite samples, a
large sample size is typically required. However, in many practical
situations involved time series data, unfortunately, the sample size
is not very large. In some cases, even if the sample size of available
data is large, fully sampled data are not always utilized because
of the concern over possible structural changes in the data. As
a result, the classical asymptotic distribution may not be a good
approximation to the finite sample distribution, and the inference
based on the classical asymptotic theory may be misleading.

Due to the above mentioned difficulties in using the frequentist
methods, there has been increasing interest in the Bayesian meth-
ods to deal with latent variable models. With the advancement of
MCMC algorithms and the rapidly expanding computing facility,
the estimation of latent variable models has become increasingly
easier. Since Bayesian inference is based on the posterior distribu-
tion, nlo asymptotic theory is needed for making statistical infer-
ences.

One of the most important statistical inferences is hypothesis
testing, for which the formulation of the null hypothesis typically
contains a unique value of a parameter which corresponds to
the prediction of an important theory. Bayes factors (BFs) are the
dominant method of Bayesian hypothesis testing (Kass and Raftery,
1995; Geweke, 2007). One serious drawback is that they are not
well defined when using an improper prior. This property is true
for all models, including models with latent variables. The use of
improper priors is typical in practice when noninformative priors
are employed. Since the improper priors are specified only up
to an undefined multiplicative constant, BFs contain undefined
constants (Kass and Raftery, 1995), and hence, take arbitrary
values.? Another drawback is computational. Calculation of BFs
for comparing any two competing models requires the marginal
likelihoods, and thus, a marginalization over the parameter vectors
in each model. When the dimension of the parameter space is
large, as is typical in latent variable models, the high-dimensional
integration poses a formidable computational challenge, although
there have been several interesting methods proposed in the
literature for computing BFs from the MCMC output; see, for
example, Chib (1995), and Chib and Jeliazkov (2001).

To define BFs with improper priors, a simple approach is to view
part of the data as a training sample. The improper prior is then
updated with the training sample to produce a new proper prior
distribution. This leads to some variants of BFs; see, for example,
the fractional BFs (O’Hagan, 1995), and the intrinsic BFs (Berger and
Perrichi, 1996).3 Instead of using BFs, Bernardo and Rueda (2002),
BR hereafter suggested treating Bayesian hypothesis testing as a
decision problem, and introduced a Bayesian test statistic that is
well defined under improper priors. A crucial element in their
approach is the specification of the loss function. They showed that
the BFs approach to hypothesis testing is a special case of their
decision structure with the loss function being a simple zero-one
function.*

1 The posterior distribution is dependent on the choice of prior distributions,
however. In some cases, the posterior distribution is sensitive to the specification
of prior distributions; see, for example, Phillips (1991).

2 Ifan informative and thus proper prior distribution is specified, BFs may be well
defined.

3 Alternatively, one may use model selection criteria, such as the deviance
information criterion proposed by Spiegelhalter et al. (2002) and applied to the
stochastic volatility models by Berg et al. (2004).

4 Poirier (1997) developed a loss function approach for hypothesis testing for
models without latent variables.

In this paper, we generalize the Bayesian hypothesis testing
approach of BR to deal with latent variable models. Like the
approach of Bernardo and Rueda, our test statistic is also based
on the decision theory. However, our approach differs from theirs
in two ways. First, BR’s approach is based on the Kullback-Leibler
(KL) loss function. Unfortunately, for the latent variable models,
the KL function used in BR may involve calculation of intractable
high-dimensional integrals. Instead we develop a new loss function
based on the theory of the powerful EM algorithm that was
originally proposed to do the maximum likelihood estimation
of parameters in latent variable models (Dempster et al., 1977).
Second, we prove that the new test statistic is well defined
under improper priors, show that it is a by-product of Bayesian
estimation, and hence, make the computation relatively easy.

The paper is organized as follows. Section 2 introduces the
setup of the latent variable models and reviews the Bayesian
MCMC method. Section 3 motivates the use of continuous loss
functions in Bayesian decision problems. In Section 4, the new
Bayesian test statistic is introduced based on the decision theory
and the EM algorithm in the context of latent variable models.
Section 5 illustrates the new method using two models, a one-
factor asset pricing model and a stochastic volatility model with
jumps. Section 6 concludes the paper, and Appendix collects the
proof of the theoretical results in the paper.

2. Latent variable models and Bayesian estimation via MCMC

Without loss of generality, lety = (¥1,¥2,...,¥:)" denote
observed variables and ® = (@1, ®3,...,®,)", the latent
variables. The latent variable model is indexed by the parameter
of interest, #, and the nuisance parameter, . Let p(y|0, ¥) be
the likelihood function of the observed data, and p(y, |0, ¥), the
complete likelihood function. The relationship between these two
functions is:

P16, ¥) = / P, w16, ¥)dw. (1)

In many cases, the integral does not have an analytical expression.
Consequently, the statistical inferences, such as estimation and
hypothesis testing, are difficult to implement if they are based on
the ML approach.

In recent years, it has been documented that the latent
variables models can be simply and efficiently estimated using
MCMC techniques under the Bayesian framework. Let p(, ¥)
be the prior distribution of unknown parameter €, ¥. Due to
the presence of the latent variables, the likelihood, p(y|0, ¥), is
intractable; hence it is difficult to compute the expectation of the
posterior density, p(@, ¥|y). To alleviate this difficulty, the data-
augmentation strategy of Tanner and Wong (1987) is applied to
augment the parameter space with the latent variable @. Then,
the Gibbs sampler can be used to generate random samples
from the joint posterior distribution p(@, ¥, w|y). After the effect
of initialization dies off (with a sufficiently long period for the
burning-in phase), the simulated random samples can be regarded
as random observations from the joint distribution. Random
observations drawn from the posterior simulation can be used
to estimate the parameters. For example, Bayesian estimates of @
and the latent variables @ may be obtained via the corresponding
sample mean of the generated random observations. For further
details about Bayesian estimation of latent variable models via
MCMC such as algorithms, examples and references, see Geweke
etal. (2011).

3. Bayesian hypothesis testing under decision theory

3.1. Hypothesis testing as a decision problem

After the model is estimated, often researchers are interested
in testing a null hypothesis, of which the simplest contains a point.
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