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a b s t r a c t

We propose a quantile-based nonparametric approach to inference on the probability density function
(PDF) of the private values in first-price sealed-bid auctionswith independent private values. Ourmethod
of inference is based on a fully nonparametric kernel-based estimator of the quantiles and PDF of
observable bids. Our estimator attains the optimal rate of Guerre et al. (2000), and is also asymptotically
normal with an appropriate choice of the bandwidth.
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1. Introduction

Following the seminal article of Guerre et al. (2000), GPV
hereafter, there has been an enormous interest in nonparametric
approaches to auctions.1 By removing the need to impose
tight functional form assumptions, the nonparametric approach
provides a more flexible framework for estimation and inference.
Moreover, the sample sizes available for auction data can be
sufficiently large to make the nonparametric approach empirically
feasible.2 This paper contributes to this literature by providing
a fully nonparametric framework for making inferences on the
density of bidders’ valuations f (v). The need to estimate the
density of valuations arises in a number of economic applications,
as for example the problem of estimating a revenue-maximizing
reserve price.3

∗ Corresponding author. Department of Economics, University of British
Columbia, 997 - 1873 East Mall, Vancouver, BC, Canada V6T 1Z1.

E-mail addresses: vadim.marmer@ubc.ca (V. Marmer),
achneero@alcor.concordia.ca (A. Shneyerov).
1 See a recent survey by Athey and Haile (2007).
2 For example, List et al. (2004) study bidder collusion in timber auctions using

thousands of auctions conducted in the Province of British Columbia, Canada.
Samples of similar size are also available for highway procurement auctions in the
United States (e.g., Krasnokutskaya, 2011).
3 Several previous articles have studied that problem, see Paarsch (1997), Haile

and Tamer (2003), and Li et al. (2003). In the supplement to this paper, we discuss
how the approach developed here can be used for construction of confidence sets
for the optimal reserve price. The supplement is available asMarmer and Shneyerov
(2010) from the UBC working papers series and the authors’ web-sites.

As a starting point, we briefly discuss the estimator proposed
in GPV. For the purpose of introduction, we adopt a simplified
framework. Consider a random, i.i.d. sample bil of bids in first-
price auctions each of which has n risk-neutral bidders; l indexes
auctions and i = 1, . . . , n indexes bids in a given auction. GPV
assume independent private values (IPVs). In equilibrium, the bids
are related to the valuations via the equilibrium bidding strategy
B : bil = B (vil). GPV show that the inverse bidding strategy is
identified directly from the observed distribution of bids:

v = ξ(b) ≡ b +
1

n − 1
G(b)
g(b)

, (1)

where G(b) is the cumulative distribution function (CDF) of bids in
an auction with n bidders, and g(b) is the corresponding density.
GPV propose to use nonparametric estimators Ĝ and ĝ . When b =

bil, the left-hand side of (1)will then givewhatGPV call the pseudo-
values v̂il = ξ̂ (bil). The CDF F(v) is estimated as the empirical CDF,
and the PDF f (v) is estimated by the method of kernels, both using
v̂il as observations. GPV show that, with an appropriate choice of
the bandwidth, their estimator converges to the true value at the
optimal rate (in the minimax sense; Khasminskii, 1979). However,
the asymptotic distribution of this estimator is as yet unknown,
possibly because both steps of the GPVmethod are nonparametric
with estimated values v̂il entering the second stage.

The estimator f̂ (v) proposed in this paper avoids the use of
pseudo-values. It builds instead on the insight of Haile et al.
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(2003).4 They show that the quantiles of the distribution of val-
uations can be expressed in terms of the quantiles, PDF, and CDF of
bids. We show below that this relation can be used for estimation
of f (v). Consider the τ -th quantile of valuations Q (τ ) and the τ -th
quantile of bids q (τ ). The latter can be easily estimated from the
sample by a variety of methods available in the literature. As for
the quantile of valuations, since the inverse bidding strategy ξ(b)
is monotone, Eq. (1) implies that Q (τ ) is related to q(τ ) as follows:

Q (τ ) = q(τ ) +
τ

(n − 1) g (q(τ ))
, (2)

providing a way to estimate Q (τ ) by a plug-in method. The CDF
F(v) can then be recovered by inverting the quantile function,
F(v) = Q−1(v).

Our estimator f̂ (v) is based on a simple idea that by differen-
tiating the quantile function we can recover the density: Q ′(τ ) =

1/f (Q (τ )), and therefore f (v) = 1/Q ′ (F(v)). Taking the deriva-
tive in (2) and using the fact that q′(τ ) = 1/g (q (τ )), we obtain,
after some algebra, our basic formula:

f (v) =


n

n − 1
1

g (q (F (v)))
−

1
n − 1

F(v)g ′ (q (F(v)))

g3 (q (F(v)))

−1

. (3)

Note that all the quantities on the right-hand side, i.e. g(b),
g ′(b), q(τ ), F(v) = Q−1(v) can be estimated nonparametrically,
for example, using kernel-based methods. Once this is done, we
can plug them in (3) to obtain our nonparametric estimator.

The expression in (3) can be also derived using the following
relationship between the CDF of values and the CDF of bids:
F(v) = G (B(v)) .

Applying the change of variable argument to the above identity,
one obtains
f (v) = g (B(v)) B′ (v)

= g (B(v)) /ξ ′ (B(v))

=


n

n − 1
1

g (B(v))
−

1
n − 1

F(v)g ′ (B(v))

g3 (B(v))

−1

.

Note however, that from the estimation perspective, the quantile-
based formula appears to be more convenient, since the bidding
strategy function B involves integration of F (see Eq. (4)).
Furthermore, replacing B(v) with appropriate quantiles has no
effect on the asymptotic distribution of the estimator.

Our framework results in the estimator of f (v) that is both
consistent and asymptotically normal,with an asymptotic variance
that can be easily estimated. Moreover, we show that, with an
appropriate choice of the bandwidth sequence, the proposed
estimator attains the minimax rate of GPV.

In a Monte Carlo experiment, we compare finite sample biases
andmean squared errors of our quantile-based estimatorwith that
of the GPV’s estimator. Our conclusion is that neither estimator
strictly dominates the other. The GPV estimator is more efficient
when the PDF of valuations has a positive derivative at the point
of estimation and the number of bidders tends to be large. On the
other hand, the quantile-based estimator is more efficient when
the PDF of valuations has a negative derivative and the number of
bidders is small. TheMonte Carlo results suggest that the proposed
estimator will be more useful when there are sufficiently many
independent auctions with a small number of bidders.5

The rest of the paper is organized as follows. Section 2
introduces the basic setup. Similarly to GPV, we allow the number
of bidders to vary from auction to auction, and also allow auction-
specific covariates. Section 3 presents our main results. Section 4

4 The focus of Haile et al. (2003) is a test of common values. Their model is
therefore different from the IPV model, and requires an estimator that is different
from the one in GPV. See also Li et al. (2002).
5 We thank a referee for pointing this out.

discusses the bootstrap-based approach to inference on the PDF
of valuations. In Section 5, we extend our framework to the case
of auctions with a binding reserve price. We report Monte Carlo
results in Section 6. Section 7 concludes. The proofs of the main
results are given in the Appendix. The supplement to this paper
contains the proof of the bootstrap result in Section 4, some
additional Monte Carlo results, as well as an illustration of how the
approach developed here can be applied for conducting inference
on the optimal reserve price.

2. Definitions

The econometrician observes a random sample {(bil, xl, nl) :

l = 1, . . . , L; i = 1, . . . , nl}, where bil is the equilibrium bid of
risk-neutral bidder i submitted in auction l with nl bidders, and
xl is the vector of auction-specific covariates for auction l. The
corresponding unobservable valuations of the object are given by
{vil : l = 1, . . . , L; i = 1, . . . , nl}. We make the following
assumption similar to Assumptions A1 and A2 of GPV (see also
footnote 14 in their paper).

Assumption 1. (a) {(nl, xl) : l = 1, . . . , L} are i.i.d.
(b) The marginal PDF of xl, ϕ, is strictly positive and continuous

on its compact support X ⊂ Rd, and admits up to R ≥ 2
continuous derivatives on its interior.

(c) The distribution of nl conditional on xl is denoted byπ(n|x) and
has support N =


n, . . . , n̄


for all x ∈ X, n ≥ 2.

(d) {vil : l = 1, . . . , L; i = 1, . . . , nl} are i.i.d. and independent of
the number of bidders conditional on xl with the PDF f (v|x)
and CDF F (v|x).

(e) f (·|x) is strictly positive and bounded away from zero and
admits up to R − 1 continuous derivatives on its support, a
compact interval


v(x), v(x)


⊂ R+ for all x ∈ X; f (v|·) admits

up to R continuous partial derivatives on Interior (X) for all
v ∈


v(x), v(x)


.

(f) For all n ∈ N , π (n|·) is strictly positive and admits up to R
continuous derivatives on the interior of X.

Under Assumption 1(c), the equilibrium bids are determined by

bil = vil −
1

(F (vil|xl))n−1

 vil

v

(F (u|xl))n−1 du, (4)

(see, for example, GPV). Let g (b|n, x) and G (b|n, x) be the PDF and
CDF of bil, conditional on both xl = x and the number of bidders
nl = n. Since bil is a function of vil, xl, and F (·|xl), the bids {bil}
are also i.i.d. conditional on (nl, xl). Furthermore, by Proposition
(i) and (iv) of GPV, for all n = n, . . . , n and x ∈ X, g (·|n, x)
has the compact support


b (n, x) , b (n, x)


for some b (n, x) <

b (n, x), and g (·|n, ·) admits up to R continuous bounded partial
derivatives.

The τ -th quantile of F (v|x) is defined as

Q (τ |x) = F−1 (τ |x) ≡ inf
v

{v : F (v|x) ≥ τ } .

The τ -th quantile of G,

q (τ |n, x) = G−1 (τ |n, x) ,

is defined similarly. The quantiles of the distributions F (v|x) and
G (b|n, x) are related through the following conditional version of
Eq. (2):

Q (τ |x) = q (τ |n, x) +
τ

(n − 1) g (q (τ |n, x) |n, x)
. (5)

Note that the expression on the left-hand side does not depend
on n, since by Assumption 1(d) and as it is usually assumed in the
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