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a b s t r a c t

This paper studies the asymptotic relationship between Bayesian model averaging and post-selection
frequentist predictors in both nested and nonnested models. We derive conditions under which their
difference is of a smaller order of magnitude than the inverse of the square root of the sample size
in large samples. This result depends crucially on the relation between posterior odds and frequentist
model selection criteria. Weak conditions are given under which consistent model selection is feasible,
regardless of whether models are nested or nonnested and regardless of whether models are correctly
specified or not, in the sense that they select the best model with the least number of parameters with
probability converging to 1. Under these conditions, Bayesian posterior odds and BICs are consistent for
selecting amongnestedmodels, but are not consistent for selecting amongnonnestedmodels andpossibly
overlapping models. These findings have important bearing for applied researchers who are frequent
users of model selection tools for empirical investigation of model predictions.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Bayesian methods are becoming increasingly popular, both as a
framework ofmodel selection and also as a tool of forecasting—see,
among others, Fernandez-Villaverde and Rubio-Ramirez (2004),
Schorfheide (2000), Stock and Watson (2003), Timmermann
(2006), Clark and McCracken (2009) and Wright (2008). They
are also often used to summarize statistical properties of data,
identify parameters of interest, and conduct policy evaluation.
While empirical applications of thesemethods are abundant, less is
understood about their theoretical sampling properties. This paper
provides a starting point for understanding the relation between
Bayesian forecast averaging and frequentist model selection and
prediction in a general framework that incorporates both nested
and nonnested models.

We study the large sample properties of Bayesian prediction
and model averaging for both nested and nonnested models. We
first show that, for a singlemodel, the difference between Bayesian
and frequentist predictors are of a smaller order of magnitude
than the inverse of the square root of the sample size in large
samples, regardless of the expected loss function used in forming
the Bayesian predictors. This contrastswith the difference between
MLE and Bayesian estimators, formed using a variety of loss
functions, which is of the order Op(1/

√
T ).
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For multiple models, we derive general conditions under which
the Bayesian posterior odds place asymptotically unit weight on
the best model with the most parsimonious parameterization.
Under these conditions, the Bayesian average model forecast is
equivalent to the frequentist post-selection forecast up to a term
that is of a smaller order of magnitude than the inverse of the
square root of the sample size in large samples. These findings
essentially combine Schwarz’s original contribution regarding
BIC—that it is an asymptotic approximation to posterior odds—
with the insights by Sin and White (1996) who demonstrate the
inconsistency of BIC for selecting among nonnested models. The
conditions we derive are weaker, more general, and allow for a
much wider class of models.

An immediate consequence of multiple model comparison
is that both the BIC and Bayesian posterior odds comparison
are inconsistent in choosing a true and parsimonious model for
selecting among nonnested models and some overlapping models.
While this procedure will select one of the best fitting models, it
does not necessarily choose the most parsimonious model with
probability converging to 1 in large samples. Consistent selection
among possibly nonnested models is feasible using nonnested
model selection criteria in the spirit of Sin and White (1996).

These findings have a bearing for applied researchers who are
frequent users of model selection tools for empirical investigation
of model predictions. In addition, empirical analyses frequently
find that forecasts generated from averages of a number of
models typically perform better than forecasts of any one of the
underlying models—see, for instance, Stock and Watson (2003).
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Our theoretical findings suggest that this can be because the
models under consideration are close to each other and are all
misspecified. As long as the posterior weights are non-degenerate
among the set of models under comparison, it is possible for
model averaging to outperform each model as long as all models
are misspecified. Indeed, it is shown that, for nonnested models,
posteriorweightswill be non-degenerate, as long as themodels are
sufficiently close to each other. The case of nested models is more
interesting. It turns out that when the two models are sufficiently
far from each other or sufficiently close to each other, the posterior
weights will be degenerate. However, when the two models are
‘‘just close enough’’ but ‘‘not too close’’, the posterior weights can
be non-degenerate, and, as a consequence, model averaging can
outperform each individual model.

Our results are of interest given the burgeoning use of
Bayesian methods in the estimation of dynamic stochastic gen-
eral equilibrium models in modern macroeconomics. Fernandez-
Villaverde and Rubio-Ramirez (2004), Schorfheide (2000), Smets
and Wouters (2003), Lubik and Schorfheide (2007) and Justiniano
and Preston (2010) present examples of estimation in both closed-
economy and open-economy settings. These papers all appeal to
posterior odds ratios as a criterion for model selection. By giving
a classical interpretation to the posterior odds ratio, the present
paper intends to provide useful information regarding the condi-
tions under which such selection procedures ensure consistency.
The analysis contributes to understanding the practical limitations
of standard model selection procedures given a finite amount of
data.

The paper proceeds as follows. Section 2 describes model
assumptions and derives their implications on the large sample
behavior of the likelihood function. Section 3 demonstrates
the asymptotic equivalence between Bayesian and frequentist
predictors for a single model under weak conditions. The rest of
the paper generalizes this result to multiple models. Section 4 first
derives weak conditions under which the generalized posterior
odds ratio is equivalent to BIC up to a term that is asymptotically
negligible, and underwhich alternativemodel selection criteria are
feasible to select consistently between both nested and nonnested
models. Section 5 makes use of the asymptotic equivalence
between posterior odds ratio and BIC to derive the relation
between Bayesian model averaging and frequentist post-selection
prediction. Finally, Section 6 generalizes the implications for
our results for Bayesian type model selection methods for non-
likelihood-based objective functions as considered by Kim (2005),
and Section 7 concludes.

2. Model assumptions and implications

For clarity of exposition,we identify amodelwith the likelihood
function that is being used to estimate model parameters. All
results extend to general randomdistance functions that satisfy the
stochastic equicontinuity assumptions stated below.

A parameter β is often estimated by maximizing a random log-
likelihood function Q̂ (β) associatedwith somemodel h(yt , β) that
depends on observed data yt and parameterized by the vector β:

Q̂ (β) ≡ Q (yt , t = 1 . . . , T ;β).

For example, under i.i.d. sampling of the data, as in Vuong (1989)
and Sin and White (1996), the log-likelihood function takes the
form of

Q̂ (β) =

T
t=1

log h(yt;β),

which minimizes the Kullback–Leibler distance between the
parametric model and the data. Objective functions other than the

log-likelihood function will also be discussed in the subsequent
sections of this paper. See also the examples in Chernozhukov and
Hong (2003).

Under standard assumptions, the random objective function
converges to a population limit when the sample size increases
without bound. It is assumed that there exists a function Q (β),
uniquely maximized at β0, which is the uniform limit of the
random sample analog

sup
β∈B

 1T Q̂ (β)− Q (β)
 p
−→ 0.

Typically, the following decomposition holds for Q̂ (β̂), where
β̂ = arg supβ∈B Q̂ (β):

Q̂ (β̂) = Q̂ (β̂)− Q̂ (β0)  
(Qa)

+ Q̂ (β0)− TQ (β0)  
(Qb)

+ TQ (β0)  
(Qc)

.

Under suitable regularity conditions, the following are true:

(Qa) = Op(1), (Qb) = Op

√
T

, (Qc) = O(T ).

The regularity conditions under which the first equality
holds are formally given below. They are the same as those
in Chernozhukov and Hong (2003). They do not require the
objective function to be smoothly differentiable, and permit
complex nonlinear or simulation-based estimation methods. In
particular, conditions that require smoothness of the objective
function are typically violated in simulation-based estimation
methods and in percentile-based non-smoothmoment conditions.
Even for simulation-based estimation methods, it can be difficult
for researchers to insure that the simulated objective functions are
smooth in model parameters.

Assumption 1. The true parameter vector β0 belongs to the
interior of a compact convex subset B of Rdim(β).

Assumption 2. For any δ > 0, there exists ϵ > 0, such that

lim inf
T→∞

P


sup

|β−β0|≥δ

1
T
(Q̂ (β)− Q̂ (β0)) ≤ −ϵ


= 1.

Assumption 3. There exist quantities ∆T , JT ,ΩT , where JT
p

→

−Aβ ,ΩT = O(1),

1
√
T
Ω

−1/2
T ∆T

d
−→ N(0, I),

such that if we write

RT (β) = Q̂ (β)− Q̂ (β0)− (β − β0)
′∆T

+
1
2
(β − β0)

′(TJT )(β − β0)

then it holds that for any sequence of δT → 0

sup
|β−β0|≤δT

RT (β)

1 + T |β − β0|
2

= op(1).

Theorem 1. Under Assumptions 1–3, Q̂ (β̂)− Q̂ (β0) = Op(1).

Given Pakes and Pollard (1989), Newey and McFadden (1994)
and Andrews (1994), the result of Theorem 1 is rather straightfor-
ward. Its proof is incorporated in the beginning of the proof for The-
orem 2 and is provided in the Appendices A–D.

The asymptotic distribution of Q̂ (β̂) − Q̂ (β0) is also easy to
derive in many situations. This distribution is useful for model
selection tests but is not directly used in model selection criteria



Download English Version:

https://daneshyari.com/en/article/5096509

Download Persian Version:

https://daneshyari.com/article/5096509

Daneshyari.com

https://daneshyari.com/en/article/5096509
https://daneshyari.com/article/5096509
https://daneshyari.com

