
Fine-grained GPU implementation of assembly-free iterative solver
for finite element problems

Jesús Martínez-Frutos ⇑, Pedro J. Martínez-Castejón, David Herrero-Pérez
Department of Structures and Construction, Technical University of Cartagena, Campus Muralla del Mar, 30202 Cartagena, Murcia, Spain

a r t i c l e i n f o

Article history:
Received 17 December 2014
Accepted 5 May 2015
Available online 27 May 2015

Keywords:
GPU computing
High performance computing
Matrix-free methods
Finite element method

a b s t r a c t

This paper proposes a fine-grained implementation of matrix-free Conjugate Gradient (CG) solver for
Finite Element Analysis (FEA) using Graphics Processing Unit (GPU) architectures. The use of GPU com-
puting in FEA is today an active research field. This is primary due to current GPU sparse solvers are par-
tially parallelizable and can hardly make use of Data-Level Parallelism (DLP) for which GPU architectures
are designed. The proposed GPU instance takes advantage of Massively Parallel Processing (MPP) archi-
tectures performing well-balanced parallel calculations at the Degree-of-Freedom (DoF) level of finite
elements. The numerical experiments evaluate and analyze the performance of diverse GPU instances
of the matrix-free CG solver.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, parallel processing has become the dominant para-
digm for High-Performance Computing (HPC). This is primarily
due to the decrease of the progress of single-core processor perfor-
mance and the diminishing marginal returns in Instruction-Level
Parallelism (ILP) [1]. The former issue, known as power wall, is
related with the end of the frequency scaling factor as a result of
the physical constraints preventing excessive power dissipation
at GHz clock rates. Such a wall was reached in the early
twenty-first century, stopping the trend of exponential frequency
growth at just below 4 GHz [2]. The latter issue, known as ILP wall,
is attributed to the disproportionate resources, power dissipation
costs and required complexity to obtain some benefits. In addition
to these issues, the memory wall [3], where the processor speed
improvement exceeds the memory speed improvement, was also
reached by the end of the twentieth century. These facts allow us
to affirm that serial computing has today reached its zenith in per-
formance [4] and future performance increases must largely come
from increasing the number of processors (multi-core architec-
tures) rather than making faster cores [5].

By increasing the number of processors, Thread-Level
Parallelism (TLP) and Data-Level Parallelism (DLP) can be
exploited. The TLP, also known as function parallelism, aims to
divide large problems into smaller ones, whose code is then dis-
tributed across multiple processors and solved in parallel. On the

other hand, the DLP, also known as Massively Parallel Processing
(MPP), focuses on distributing the data across different parallel
computing nodes, which perform the same task on different pieces
of distributed data. The TLP-based techniques permit flexible par-
allel computing, while higher speedups are possible with
DLP-based approaches. For these reasons, task and data paral-
lelisms are often combined [6] to achieve performance increments.

Graphics Processing Unit (GPU) architectures are specially
designed to exploit and deal with DLP. These architectures have
emerged as a competitive platform for non-graphics HPC applica-
tions [7], the so-called General-Purpose computing on Graphics
Processing Units (GPGPUs) [8]. GPU computing has been success-
fully applied in a wide spectrum of scientific, engineering and
enterprise applications [9–11]. This has been facilitated by the
tremendous advances made in the programming languages and
tools for GPU developments. Even though these languages and
tools make the developments using GPU considerably easier, the
programming strategy is a must and the problem formulation is
crucial to obtain acceptable results.

Despite the exponential increase in the computational
resources provided by the Moore’s law [12] last years, the compu-
tation cost, memory requirements and time constraints of Finite
Element Analysis (FEA) are still long-standing and cutting edge
challenges due to the ever-increasing complexity of finite element
models [13]. The Finite Element Method (FEM) [14] involves two
computationally intensive tasks: the assembly of the local element
equations into a global system of equations and the system resolu-
tion. For large scale finite element models these tasks can lead to
an unaffordable problem. The resolution of large system of equa-
tions is normally addressed using iterative solvers, which require

http://dx.doi.org/10.1016/j.compstruc.2015.05.010
0045-7949/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: jesus.martinez@upct.es (J. Martínez-Frutos), pedro.castejon@

upct.es (P.J. Martínez-Castejón), david.herrero@upct.es (D. Herrero-Pérez).

Computers and Structures 157 (2015) 9–18

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate /compstruc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2015.05.010&domain=pdf
http://dx.doi.org/10.1016/j.compstruc.2015.05.010
mailto:jesus.martinez@upct.es
mailto:pedro.castejon@ upct.es
mailto:pedro.castejon@ upct.es
mailto:david.herrero@upct.es
http://dx.doi.org/10.1016/j.compstruc.2015.05.010
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


of less memory than direct methods at the cost of increasing the
computational cost. Such a computational time is often reduced
using distributed computing [15,16]. The unaffordable assembly
processes due to insufficient memory have been traditionally
addressed using assembly-free methods, which were developed
for low memory computers in the early eighties [17]. These
methods obviate the assembly step, saving the required
memory, at the cost of increasing the computational cost
meaningfully. A key feature of matrix-free methods is that they
are parallelizable.

The weak scalability of GPU sparse calculations has constrained
the acceleration of FEA using GPU architectures [18,19]. Significant
speedups have been achieved in the creation and assembly of the
global stiffness matrix [20]. However, the time spent in this stage
is much shorter than the time spent in the solving stage [21].
The GPU instances of iterative solvers using sparse-matrix repre-
sentation aim to speedup matrix–vector and inner-vector product
operations [22–27] considering limited transfer rates over data
channels, concurrency and memory coalescing problems. GPU
computing has also been successfully applied to solve time depen-
dent problems, such as elastodynamic simulations [28], where
concurrent read/write (r/w) access to nodal information is of para-
mount importance.

The use of matrix-free methods on GPU architectures has
already shown its advantages for FEA problems using the
Element-by-Element (EbE) FEM technique [29]. Instead of assem-
bling the global system matrix, the EbE FEM solution scheme
makes the entire decomposition of some iterative solution scheme
into element-level computations [30]. The refinement of GPU com-
putation using this technique, performing calculations at
node-level, has also shown its advantages [31]. The EbE solution
scheme has also been applied to problems in which the computa-
tional bottleneck comes from the regeneration of the finite element
model, such as those appearing in structural topology optimization
[32,33]. Some disadvantages of the EbE scheme are shown in [33],
where poor or null speedups are achieved. The reasons of these
results are deeply studied in this work to determine the prevalent
factors of GPU implementation for matrix-free solvers.

This work proposes a fine-grained GPU implementation of
matrix-free Conjugate Gradient (CG) solver for EbE FEM technique.
The matrix–vector operations of the iterative solver are performed
at Degree of Freedom (DoF) level of finite elements. The underlying
idea is that the slowest task determines the speed of the whole cal-
culation. For this reason, the workload is reduced and
well-balanced for all the threads of the MPP architecture.
Besides, the concurrent memory access is studied both using graph
labeling methods and reorganizing the concurrent accesses. The
work aims to provide some guiding principles about the best
way to exploit the parallelization capabilities of GPUs for imple-
menting iterative solvers. The proposed GPU instance of EbE FEM
technique is compared with other possible implementations to
evaluate the effects of diverse factors, including granularity, con-
current memory access and synchronization overheads. This com-
parison aims to shed some light on the complex effects observed
when implementing matrix-free iterative solvers on GPU architec-
tures, which are difficult to understand because these factors have
often opposite effects.

The paper is structured as follows. Section 2 presents the mas-
sive parallel GPU architecture and the parallel development envi-
ronment. Section 3 is devoted to the study and discussion of
granularity and concurrency in the implementation of EbE FEM
technique on GPU architectures. The numerical experiments to
evaluate diverse GPU instances are presented in Section 4.
Finally, Section 5 presents some conclusions about the steps to fol-
low for the successful GPU implementation of assembly-free CG
solver for FEM.

2. GPU and CUDA architecture

GPU devices offer incredible computational resources for both
graphics and non-graphics processing. This massively parallel
architecture was initially designed to satisfy the market demand
of real-time and realistic 3D visualization. The use of Nvidia devices
and its programming model, Compute Unified Device Architecture
(CUDA), is the prevailing tendency. Nevertheless, the low-level
API Open Computing Language (OpenCL) for heterogeneous com-
puting, available for different GPU manufacturers, permits us to
launch parallel code using a limited subset of the C programming
language. On the other hand, CUDA provides a comprehensive
development environment for building GPU-accelerated applica-
tions using high-level C/C++ programming language.

The CUDA environment allows us to view the GPU as a compute
device able to run a lot of threads using Single Instruction Multiple
Data (SIMD) architecture, which typically exploits DLP. The parallel
code (single instruction) is defined as a C Language Extension func-
tion, called kernel, which is executed by a lot of CUDA threads
using different data (multiple data). The kernel call should specify
the number of CUDA threads organized as a grid of thread blocks.
These threads have only access to the device dynamic
random-access memory (DRAM) and on-chip memory through
the memory spaces depicted in Fig. 1. The blocks are batch of
threads able to cooperate by sharing data through shared memory
and to synchronize their execution coordinating memory access.
The threads also have access to a fast private memory and to a
rather slow memory. The latter is composed of constant and tex-
ture memory, which permit read-only memory access, and global
memory, which allows r/w memory access. Fig. 1 shows how ker-
nels are invoked from the host (CPU) to the device (GPU) organized
as a batch of threads grouped as a grid of thread blocks.

The software developments using CUDA consist of the following
steps: (i) memory allocation and transaction, (ii) kernel execution
on the GPU and (iii) copy back the results to the host. The strategies
to optimize GPU computing can be summarized as follows: (i) opti-
mization of parallel execution to achieve maximum use of cores,
(ii) optimization of memory access to avoid concurrency, (iii) opti-
mization of instruction usage to achieve maximum instruction per-
formance and (iv) optimization of communications to achieve
minimal synchronization between parallel executions. The
improvement and degradation of performance of GPU instances
can be justified by some of these optimization criteria.

3. Computational implementation

Let consider the linear system of equations resulting from the
finite element discretization of the linear elasticity system as
follows

Ku ¼ f; ð1Þ

where K is the symmetric positive-definite global stiffness matrix, u
is the vector of unknown displacements, and f is the vector of nodal
forces.

For large-scale systems of equations, the storage and manipula-
tion of matrix K require of a lot of memory and computer time
even with the use of sparse linear algebra. The memory limitation
makes iterative solver a prevailing approach for large-scale simula-
tions where direct methods would be prohibitively expensive even
with parallel computing. Iterative solvers are flexible, easy to
implement and convergence in a finite number of steps is theoret-
ically demonstrated. Their implementation requires of matrix–vec-
tor products, which can make the problem computationally
intensive for large system of equations.

10 J. Martínez-Frutos et al. / Computers and Structures 157 (2015) 9–18



Download English Version:

https://daneshyari.com/en/article/509654

Download Persian Version:

https://daneshyari.com/article/509654

Daneshyari.com

https://daneshyari.com/en/article/509654
https://daneshyari.com/article/509654
https://daneshyari.com

