
Journal of Econometrics 161 (2011) 325–337

Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

Estimation of stable distributions by indirect inference
René Garcia a,∗, Eric Renault b,c, David Veredas d

a EDHEC Business School, France
b University of North Carolina at Chapel Hill, USA
c CIRANO and CIREQ, Canada
d ECARES, Solvay Brussels School of Economics and Management, Université libre de Bruxelles, Belgium

a r t i c l e i n f o

Article history:
Available online 23 December 2010

JEL classification:
C13
C15
G11

Keywords:
Stable distribution
Indirect inference
Constrained indirect inference
Skewed-t distribution

a b s t r a c t

This article dealswith the estimation of the parameters of anα-stable distributionwith indirect inference,
using the skewed-t distribution as an auxiliary model. The latter distribution appears as a good candidate
since it has the same number of parameters as the α-stable distribution, with each parameter playing
a similar role. To improve the properties of the estimator in finite sample, we use constrained indirect
inference. In a Monte Carlo study we show that this method delivers estimators with good properties
in finite sample. We provide an empirical application to the distribution of jumps in the S&P 500 index
returns.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The α-stable distribution has been widely used for fitting data
in which extreme values are frequent. As shown in early work
by Mandelbrot (1963) and Fama (1965a), it accommodates heavy-
tailed financial series, and therefore produces more reliable mea-
sures of tail risk. The α-stable distribution is also able to capture
skewness in a distribution, which is another characteristic feature
of financial series. The distribution is also preserved under convo-
lution. This property is appealing when considering portfolios of
assets, especially when the skewness and fat tails of returns are
taken into account to determine the optimal portfolio.1 Stable pro-
cesses have recently been used in the high frequency microstruc-
ture literature by Ait-Sahalia and Jacod (2007, 2008)who proposed
volatility estimators for some processes built from the sumof a sta-
ble process and another Levy process.

To estimate the parameters of an α-stable distribution we pro-
pose to use indirect inference (see Smith, 1993; Gouriéroux et al.,
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E-mail addresses: rene.garcia@edhec.edu (R. Garcia), renault@email.unc.edu
(E. Renault), dveredas@ulb.ac.be (D. Veredas).
1 Basic references on the α-stable distribution are Feller (1971), Zolotarev (1986)

and Samorodnitsky and Taqqu (1994). Its properties motivate its use in the
modelling of financial series in particular by Carr et al. (2002) and Mittnik et al.
(2000). For value-at-risk applications, see in particular Bassi et al. (1998) and
Mittnik et al. (1998). For portfolio allocation with stable distributions, see Fama
(1965b), Bawa et al. (1979), and Ortobelli et al. (2002).

1993, GMR hereafter), a method particularly suited to situations
where the model of interest is difficult to estimate but relatively
easy to simulate. Indeed, the α-stable density function does not
have a closed-form expression and is only characterized as an in-
tegral difficult to compute numerically, making ML estimation not
very appealing in practice.2 However, several methods are avail-
able to simulate α-stable random variables, such as the one de-
scribed in Chambers et al. (1976).

Indirect inference involves the use of an auxiliary model. Aux-
iliary parameters are recovered through maximization of the
pseudo-likelihood of a model based on the fictitious i.i.d. sampling
in a skewed-t distribution of Fernández and Steel (1998).3 It is a
Student-t with an inverse scale factor in the positive and nega-
tive orthants, allowing for asymmetries. The distribution has four
parameters which have a one-to-one correspondence with the pa-
rameters of the α-stable distribution. There is a clear and inter-
pretablematching between the two sets, parameter byparameter.4

2 Nevertheless, DuMouchel (1973) has shown that the maximum likelihood
(ML hereafter) estimator is consistent, asymptotically normal and reaches the
Cramer–Rao efficiency bound.
3 Hansen (1994) also proposes a skewed version of the Student-t . The way

skewness is introduced differs from that of Fernández and Steel (1998).
4 During the course of this project, we were made aware by Lombardi that

Lombardi and Calzolari (2008) use the same auxiliary model to estimate a stable
distribution. The two projects were conducted independently and differ in several
respects.
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Our application of indirect inference is innovative in two
respects. First, followingMcCulloch (1986) in the context ofmatch-
ing quantiles, we actually perform a constrained version of indi-
rect inference, introducing an a priori constraint on one auxiliary
parameter to match, namely the number of degrees of freedom of
the Student-t . The theory for such constrained indirect inference
(CII hereafter) has been developed in a general context by Calzolari
et al. (2004) (CFS hereafter). Second, we stress in our application
that theα-stable simulator need not to take into account the actual
dynamic features of the data.5 We show that, for a reasonable level
of asymmetry, the pseudo-ML estimators of the four parameters
of the skewed-t distribution are asymptotically normal evenwhen
the observations are generated by anα-stable distribution.6 Conse-
quently, the associated indirect inference estimators of the param-
eters of the α-stable distribution are asymptotically normal too.

We compare our method to two moment-based estimation
methods. McCulloch (1986) proposed a quantile-based estimator,
by building sample counterparts of the cumulative distribution
function. Another approach is to match moments produced by
the characteristic function (CF hereafter). Carrasco and Florens
(2000, 2002) devise an optimal generalized method of moments
based on a continuum of moment conditions corresponding to
the CF computed at all points. Called continuous GMM (CGMM),
the method produces an efficient estimator and overcomes the
necessity of choosing an arbitrary set of frequencies, which was a
fundamental drawback of CF-based methods.7

In a Monte Carlo study, we compare our estimator with
CGMM and report that it is often more efficient in finite sample.
Since DuMouchel (1973) provides a way to compute the efficiency
bound in the i.i.d. case, we are able to measure the performance
of our indirect inference estimator with the ML benchmark.
At least in this i.i.d. setting, the efficiency loss appears mainly
negligible given the finite sample improvement brought about by
indirect inference. We also compare our method to the simple
but inefficient quantile-based estimator of McCulloch (1986). Our
estimates are close to those obtained with the quantile-based
method. However, our estimators appear to have a much smaller
variance, both asymptotically and in finite sample.

Many of the properties of stable models are shared by GARCH
models. In particular, both models share the facts that the uncon-
ditional distribution has fat tails and that the tail shape is invariant
under aggregation (see Ghose and Kroner, 1995; de Vries, 1991).8
We illustrate this observational equivalence by generating differ-
ent GARCH(1, 1) and IGARCH(1, 1) with Gaussian and Student-t
innovations and aggregating the generated processes to lower fre-
quencies. We show that the unconditional density captures very
well the variance and kurtosis through aggregation and memory.
The tail index α remains relatively constant under aggregation
while the estimated dispersion increases.

We complete our analysis by applying our estimationprocedure
to a series of realized jumps filtered from the S&P 500 return
series using themethodology of Tauchen and Zhou (2011).We find

5 The use of a wrongly specified simulator in indirect inference has not received
much attention, except in Dridi et al. (2007).
6 According to our Monte Carlo experiments, the allowed level of asymmetry is

actually consistent with the one produced by an α-stable distribution with support
on the whole real line.
7 Some authors, like Fielitz and Rozelle (1981), recommend to match only a few

frequencies on the basis of Monte Carlo results, while others, like Feuerverger and
McDunnough (1981), recommend on the contrary to use as many frequencies as
possible.
8 It is well known that, except for the limiting case of the normal distribution, all

theα-stable distributions have infinite variance. However, it should be remembered
that a highly persistent GARCHwith, by definition, finite conditional variances, may
produce infinite moments at orders not much higher than two.

that the stable distribution that best characterizes these jumps is
symmetric with an estimated tail index of 1.7.

The rest of the paper is organized as follows. Section 2 briefly
describes the properties of α-stable distributions and their estima-
tion by CGMM and empirical quantiles. In Section 3 we detail the
application of the indirect inference methodology to the α-stable
distribution, using the skewed-t distribution as an auxiliarymodel.
We discuss the primitive conditions that warrant identification of
structural parameters and asymptotic normality of their indirect
inference estimators. Section 4 reports the results of a Monte Carlo
study where indirect inference is compared to CGMM and em-
pirical quantiles. The superior performance of CII is documented
through both asymptotic and Monte Carlo MSE. We also compare
and illustrate through simulations the relationship between the
fat-tailed unconditional distributions produced by highly persis-
tent GARCHmodels and an α-stable model. Section 5 is devoted to
an empirical application to jumps in equity returns. Section 6 con-
cludes. Proofs to several propositions are provided in theAppendix.

2. The α-stable distributions, CGMM and empirical quantiles

The α-stable family of distributions is characterized by four
parameters α, β , σ and µ, where α is the stability parameter, β
the skewness parameter, σ the scale parameter, andµ the location
parameter. These parameters define the natural logarithm of the
characteristic function as

lnψθ (t) = ln E(exp(it Y ))
= iµt − σ α|t|α[1 − iβ sign(t) tan(πα/2)]

where θ = (α, β, σ , µ) ∈ Θ =]1, 2] × [−1, 1] × R∗
+

× R,
Y is the random variable following the α-stable distribution S(θ)
with characteristic function ψθ (·) and sign(t) = t/|t| for t ≠ 0
(and 0 for t = 0). Note that the α-stable distribution can also be
defined for α smaller than 1 but we preclude this case to guarantee
the existence of a finite expectation. This requirement is rather
realistic for the application to financial returns we have in mind.
More generally, E(|Y |

p) < ∞ for all p < α and in particular
E(Y ) = µ.

Even though the likelihood function is not known in closed form
in general, the score function for an i.i.d. sample of size n remains
asymptotically root-n normal. Therefore, DuMouchel (1973) was
able to show that the standard tools ofmaximum likelihood theory
(mainly root-n asymptotic normality and Cramer–Rao bounds)
may be applied to estimation of θ insofar as its domain is limited to
|β| < min(α, 2 − α). This result implies that efficient estimation
of the parameters of α-stable distributions remains a sensible goal
and that asymptotic normality of M-estimators like MLE or QMLE
can be derived by the application of standard central limit theory
to well-chosen (pseudo)-score functions rather than to moments
of Y , which do not exist. This idea is the main motivation of the
indirect inference strategy proposed in this paper.

Other estimation methods are available. Since the theoretical
characteristic function has a closed form, estimation can be per-
formed by fitting the sample characteristic function n−1∑n

j=1 exp
(itkYj) to the theoretical oneψθ (tk), defined on a grid of frequencies
tk, k = 1, . . . , K . The problem is that it takes an infinite number of
moment conditions, indexed by tk ∈ R, to summarize the informa-
tional content of the characteristic function. Consider the moment
conditions:

E(h(tk, Y , θ)) = 0, ∀k = 1, . . . , K , (1)

where h(tk, Y , θ) = exp(itY ) − ψθ (tk). They amount to a set of
2K moment restrictions E(gk(θ, Y )) = 0 that include the real and
imaginary parts of h(tk, Y , θ). Standard GMM estimates are solu-
tions of min ||Ω

−1/2
n hn(., Y , θ)|| where hn(., Y , θ) is the sample
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