Journal of Econometrics 162 (2011) 240-247

journal homepage: www.elsevier.com/locate/jeconom e

Contents lists available at ScienceDirect

Journal of Econometrics

Estimation of fractional integration under temporal aggregation

Uwe Hassler *
Goethe University Frankfurt, RuW, Grueneburgplatz 1, 60323 Frankfurt, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 17 March 2010
Received in revised form

22 January 2011

Accepted 24 January 2011
Available online 11 March 2011

A result characterizing the effect of temporal aggregation in the frequency domain is known for arbitrary
stationary processes and generalized for difference-stationary processes here. Temporal aggregation
includes cumulation of flow variables as well as systematic (or skip) sampling of stock variables. Next, the
aggregation result is applied to fractionally integrated processes. In particular, it is investigated whether
typical frequency domain assumptions made for semiparametric estimation and inference are closed
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1. Introduction

Determining inflation persistence is a prominent issue when it
comes to forecasting (Stock and Watson, 2007 ), or when monetary
policy recommendations are at stake; see e.g. Mishkin (2007).
The effect of temporal aggregation on inflation persistence has
recently been studied by Paya et al. (2007). Fractional integration
is one model for inflation persistence that can be traced back
to Hassler and Wolters (1995) or Baillie et al. (1996). The question
how aggregation and persistence interact is of interest beyond
inflation, and has troubled applied economists for a long time;
see Christiano et al. (1991) for empirical evidence in the context of
the permanent income hypothesis and Rossana and Seater (1995)
for a representative set of economic time series. Using fractionally
integrated models, Chambers (1998) found with macroeconomic
series that the empirical degree of integration may depend on the
level of temporal aggregation; see also Diebold and Rudebusch
(1989) or Tschernig (1995). In empirical finance, too, one of the
core issues with respect to realized volatility is optimal sampling;
see e.g. Ait-Sahalia et al. (2005) and the results by Drost and Nijman
(1993).

In this paper we understand by temporal aggregation both sys-
tematic sampling (or skip sampling) of stock variables where only
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every pth data point is observed, and summation of flow vari-
ables where neighboring observations are cumulated to determine
the total flow. Econometricians have devoted their attention to
both types of temporal aggregation for decades; see Silvestrini and
Veredas (2008) for a recent survey. Early results for autoregressive
moving average (ARMA) models were obtained by Brewer (1973)
and Weiss (1984). A treatment of integrated (of order one) ARIMA
models was provided by Wei (1981) and Stram and Wei (1986),
for skip sampling and cumulating, respectively. In particular, skip
sampling can be embedded in the more general problem of miss-
ing observations; see Palm and Nijman (1984) for an investigation
of dynamic regression models. Aspects of forecasting have been
addressed by Liitkepohl (1987) and Liitkepohl (2009), while Mar-
cellino (1999) deals with cointegration and causality under aggre-
gation. Moreover, the potential interaction of seasonal integration
and unit roots at frequency zero due to temporal aggregation was
studied by Granger and Siklos (1995); see also Pons (2006). In fact,
there is a literature on “span versus frequency” when it comes to
testing the null hypothesis of a unit root, which started with Shiller
and Perron (1985) and came to a preliminary end with Chambers
(2004).

Notwithstanding the vast amount of papers on temporal aggre-
gation, little attention has been paid to effects in the frequency
domain, notable exceptions being Drost (1994) and Souza (2003).
In the frequency domain, temporal aggregation is accompanied by
the so-called aliasing effect, which is well known under discrete-
time sampling from a continuous-time process; see e.g. Hansen
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and Sargent (1983). For the special case of fractional integration,
spectral results have been obtained by Chambers (1998), Hwang
(2000), Tsai and Chan (2005b), and Souza (2005). Further, Cham-
bers (1996) and Tsai and Chan (2005a) cover the related case of
discrete-time sampling from a continuous-time long memory pro-
cess, while Souza (2007, 2008) focusses on the effect of temporal
aggregation on widely used memory estimators.

We add two aspects to this literature: a general characteriza-
tion of time aggregation in the frequency domain for processes that
become stationary only after differencing r times for some natu-
ral number r, and an investigation, which semiparametric estima-
tors of fractionally integrated models retain their consistency and
limiting normality under aggregation. In greater detail our con-
tributions are the following. We draw from the literature results
on aliasing and moving-averaging in case of temporal aggregation
of arbitrary stationary processes (Lemmas 1 and 2), and we com-
bine these lemmae to characterize the frequency domain effect of
temporal aggregation for processes that become stationary only af-
ter integer differencing r times, r = 0, 1, 2, ... (Proposition 1).
Next, the aggregation results are applied to fractionally integrated
processes. In particular, we investigate whether typical assump-
tions on fractionally integrated processes, which are made in the
literature to obtain consistency or limiting normality of semipara-
metric estimators, are closed with respect to aggregation. In other
words: if {z;} satisfies a set of assumptions used to prove proper-
ties of some estimator or test, does the temporal aggregate ful-
fill them, too? Differing findings are obtained for cumulating of
flow data (Proposition 2), skip sampling of stocks (Proposition 3),
and for the case of generalized fractional integration where the
singularity may occur at frequencies different from zero (Propo-
sition 4). In a couple of remarks we discuss as consequences for
applied work, which estimators remain valid upon aggregation
(under which conditions on the bandwidth choice).

The rest of this paper is organized as follows. Section 2 treats
the general aggregation effect in terms of spectral densities. In
Section 3, the aggregation results are applied to the semiparamet-
ric estimation of the memory parameter of fractional integration.
The last section contains a more detailed non-technical summary.
Proofs are relegated to the Appendix.

2. Aggregation in the frequency domain

For sequences {q;} and {b;}, let a; ~ b; denote a;/b; — 1 as
j — oo, while for functions, a(x) ~ b(x) is short for a(x)/b(x) — 1
as x — 0. Further, a(x) = 0(x°) means that a(x)x ¢ is bounded
as x — 0, while a(x) = o(x°) signifies a(x)x ¢ — 0. First-order
derivatives are given as a’(x). Finally, let Z stand for the set of all
integers.

2.1. Notation and assumptions

Let {z;},t = 1,2, ..., T, denote some time series to be aggre-
gated over p periods. The aggregate is constructed for the new time
scale 7. In case of stock variables, aggregation or systematic sam-
pling means skip sampling where only every p’th data point is ob-
served,

Zr =2y, T=12,..., (1)

where for the rest of the paper p > 2 is a finite integer. Flow
variables are aggregated by cumulating p neighboring observations
that do not overlap to determine the total flow over p sub-periods,

Zr = Zpr + Zpr—1 + -+ Zp(r—1)+1
= S0z, T=12..., 2)

where Sp(L) == 1+L+--- +1P~1is the moving average polynomial
of degree p in the usual lag operator L. Hence, {Z,} is obtained by
skip sampling the overlapping moving average process {S,(L)z;}.

Clearly, many economic variables are not stationary. It is often
assumed that the basic variable {z;} is given by integration over
stationary increments,

t
Z; :zo—l—Zyi, t=1,2,...,T.

i=1
If {y;} is a stationary fractionally integrated process of order d,
d < 0.5, as defined in a subsequent section, then the partial
sum process {z;} is sometimes called fractionally integrated (of
order 6§ = 1 + d) of “type I”; see Marinucci and Robinson
(1999) and Robinson (2005). Some economic variables are even
considered as integrated of order 2. Therefore, we allow for
stationarity and different degrees of nonstationarity at the same
time. It is maintained for some natural number r € {0, 1,2, ...}
that the process {z;} solves the following difference equation with
A=1-1L:

Az=y, t=1,2...,T. 3)

Note that differencing changes the status of stock series: While log-
prices p; = log P, are stocks, the inflation rate 7, = Ap; is a flow
variable.

To fully specify the potentially nonstationary processes from
(3), we have to add assumptions on {y;}. Our results will hold
for any stationary process {y;} with integrable spectral density f,.
Since f, is an even and 2 -periodic function, the definition of the
spectral density can be extended to the whole real range, and we
focus on the interval [0, 7] in the following assumption.

Assumption 1. The process {y;}, t € Z, is covariance stationary
with integrable spectral density f,(A) on IT, where IT = [0, ] iff,
is well defined on the whole interval, or I7 = [0, ] \ {A*} if f, has
a singularity at some frequency A* € [0, x].

Note that f, does not have to exist everywhere. A singularity at
A* might come from (generalized) fractional integration with long
memory; see (12) below. In fact, we might allow for k singularities
(having e.g. so-called k-factor Gegenbauer processes in mind,;
see Woodward et al., 1998). Further, we stress that f,(0) = 0 is
not excluded. This covers the particular case of over-differencing.
Assume e.g. that no differencing is required to obtain stationarity,
but {z} is differenced in practice. This case is dealt with by r = 1
in (3) with the assumption that {y,} is over-differenced.

To set the scene for the next subsection, we define the lag
operator £ operating on the aggregate time scale 7, such that
£ = [P with L operating on t (see e.g. Wei, 1990, Ch. 16). Let
V = 1 — £ stand for the differences of the new time scale 7. In
case that r > 1in (3), we will study the effect of first aggregating
and then differencing. The spectral densities of the differenced
aggregates {V'z,} and {V'Z,} are denoted as fyrz(A) and fyrz (1),
respectively. Forr = 0, we havez; = y; and f, (1) or f, (1) represent
the spectra of the stationary aggregates {y,} and {y.}.!

2.2. Result and discussion

The main effect in the frequency domain is the so-called aliasing
effect that arises from skip sampling. Since cumulation of non-
overlapping data can be reduced to skip sampling a moving
average, the effect will be present also with flow data. Therefore,
we first pin down the aliasing effect. The following finding for

1 Sometimes stock variables are aggregated by averaging over p non-overlapping
observations, {Z,}, such that p sub-periods are replaced by the mean of p values.
Obviously this is directly connected to cumulation from (2), Z, := Z;/p. Let the
spectrum of the differenced aggregate {V'Z,} be denoted as fyr,(1). There is no
need to address the case of averaging separately since it holds fyr, (1) = fvrz N)/p?.
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