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a b s t r a c t

Weprovide a family of tests for the IID hypothesis based on generalized runs, powerful against unspecified
alternatives, providing a useful complement to tests designed for specific alternatives, such as serial
correlation, GARCH, or structural breaks. Our tests have appealing computational simplicity in that they do
not require kernel density estimation, with the associated challenge of bandwidth selection. Simulations
show levels close to nominal asymptotic levels. Our tests have power against both dependent and
heterogeneous alternatives, as both theory and simulations demonstrate.
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1. Introduction

The assumption that data are independent and identically
distributed (IID) plays a central role in the analysis of economic
data. In cross-section settings, the IID assumption holds under pure
random sampling. As Heckman (2001) notes, violation of the IID
property, therefore random sampling, can indicate the presence of
sample selection bias. The IID assumption is also important in time-
series settings, as processes driving time series of interest are often
assumed to be IID.Moreover, transformations of certain time series
can be shown to be IID under specific null hypotheses. For example
Diebold et al. (1998) show that to test density forecast optimality,
one can test whether the series of probability integral transforms
of the forecast errors are IID uniform (U[0, 1]).

There is a large number of tests designed to test the IID
assumption against specific alternatives, such as structural breaks,
serial correlation, or autoregressive conditional heteroskedasticity.
Such special purpose tests may lack power in other directions,
however, so it is useful to have available broader diagnostics
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that may alert researchers to otherwise unsuspected properties
of their data. Thus, as a complement to special purpose tests, we
consider tests for the IID hypothesis that are sensitive to general
alternatives. Herewe exploit runs statistics to obtain necessary and
sufficient conditions for data to be IID. In particular, we show that if
the underlying data are IID, then suitably defined runs are IID with
the geometric distribution. By testing whether the runs have the
requisite geometric distribution, we obtain a new family of tests,
the generalized runs tests, suitable for testing the IID property. An
appealing aspect of our tests is their computational convenience
relative to other tests sensitive to general alternatives to IID.
For example, Hong and White’s (2005) entropy-based IID tests
require kernel density estimation, with its associated challenge of
bandwidth selection. Our tests do not require kernel estimation
and, as we show, have power against dependent alternatives. Our
tests also have power against structural break alternatives,without
exhibiting the non-monotonicities apparent in certain tests based
on kernel estimators (Crainiceanu and Vogelsang, 2007; Deng and
Perron, 2008).

Runs have formed an effective means for understanding data
properties since the early 1940s. Wald and Wolfowitz (1940),
Mood (1940), Dodd (1942) and Goodman (1958) first studied runs
to test for randomness of data with a fixed percentile p used in
defining the runs. Granger (1963) andDufour (1981) propose using
runs as a nonparametric diagnostic for serial correlation, noting
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that the choice of p is important for the power of the test. Fama
(1965) extensively exploits a runs test to examine stylized facts of
asset returns in US industries, with a particular focus on testing for
serial correlation of asset returns. Heckman (2001) observes that
runs tests can be exploited to detect sample selection bias in cross-
sectional data; such biases can be understood to arise from a form
of structural break in the underlying distributions.

Earlier runs tests compared the mean or other moments of the
runs to those of the geometric distribution for fixed p, say 0.5
(in which case the associated runs can be computed alternatively
using the median instead of the mean). Here we develop runs
tests based on the probability generating function (PGF) of the
geometric distribution. Previously, Kocherlakota and Kocherlakota
(KK, 1986) have used the PGF to devise tests for discrete random
variables having a given distribution under the null hypothesis.
Using fixed values of the PGF parameter s, KK develop tests for
the Poisson, Pascal–Poisson, bivariate Poisson, or bivariateNeyman
type A distributions. More recently, Rueda et al. (1991) study
PGF-based tests for the Poisson null hypothesis, constructing test
statistics as functionals of stochastic processes indexed by the PGF
parameter s. Here we develop PGF-based tests for the geometric
distribution with parameter p, applied to the runs for a sample of
continuously distributed random variables.

We construct our test statistics as functionals of stochastic
processes indexed by both the runs percentile p and the PGF
parameter s. By not restricting ourselves to fixed values for p and/or
s, we create the opportunity to construct testswith superior power.
Further, we obtain weak limits for our statistics in situations
where the distribution of the raw data from which the runs
are constructed may or may not be known and where there
may or may not be estimated parameters. As pointed out by
Darling (1955), Sukhatme (1972), Durbin (1973) andHenze (1996),
among others, goodness-of-fit (GOF) based statistics such as ours
may have limiting distributions affected by parameter estimation.
As we show, however, our test statistics have asymptotic null
distributions that are not affected by parameter estimation under
mild conditions. We also provide straightforward simulation
methods to consistently estimate asymptotic critical values for our
test statistics.

We analyze the asymptotic local power of our tests, and we
conduct Monte Carlo experiments to explore the properties of our
tests in settings relevant for economic applications. In studying
power, we give particular attention to dependent alternatives
and to alternatives containing an unknown number of structural
breaks. To analyze the asymptotic local power of our tests against
dependent alternatives, we assume a first-order Markov process
converging to an IID process in probability at the rate n−1/2,
where n is the sample size, and we find that our tests have
nontrivial local power.Weworkwith first-orderMarkov processes
for conciseness. Our results generalize to higher-order Markov
processes, but that analysis is sufficiently involved that we leave
it for subsequent work.

Our Monte Carlo experiments corroborate our theoretical
results and also show that our tests exhibit useful finite sample
behavior. For dependent alternatives, we compare our generalized
runs tests to the entropy-based tests of Robinson (1991), Skaug
and Tjøstheim (1996) and Hong and White (2005). Our tests
perform respectably, showing good level behavior and useful, and
in some cases superior, power against dependent alternatives. For
structural break alternatives, we compare our generalized runs
tests to Feller’s (1951) andKuan andHornik’s (1995) RR test, Brown
et al. ’s (1975) RE-CUSUM test, Sen’s (1980) and Ploberger et al. ’s
(1989) RE test, Ploberger and Krämer’s (1992) OLS-CUSUM test,
Andrews’ (1993) Sup-W test, Andrews and Ploberger’s (1994) Exp-
W and Avg-W tests, and Bai’s (1996) M-test. These prior tests
are all designed to detect a finite number of structural breaks

at unknown locations. We find good level behavior for our tests
and superior power against multiple breaks. An innovation is that
we consider alternatives where the number of breaks grows with
sample size. Our new tests perform well against such structural
break alternatives, whereas the prior tests do not.

This paper is organized as follows. In Section 2, we introduce
our new family of generalized runs statistics and derive their
asymptotic null distributions. These involve Gaussian stochastic
processes. Section 3 provides methods for consistently estimating
critical values for the test statistics of Section 2. This permits us to
compute valid asymptotic critical values evenwhen the associated
Gaussian processes are transformed by continuous mappings
designed to yield particular test statistics of interest. We achieve
this using other easily simulated Gaussian processes whose
distributions are identical to those of Section 2. Section 4 studies
aspects of local power for our tests. Section 5 contains Monte Carlo
simulations; this also illustrates the use of the simulationmethods
developed for obtaining the asymptotic critical values in Section 2.
Section 6 contains concluding remarks. Allmathematical proofs are
collected in the Appendix.

Before proceeding, we introduce mathematical notation used
throughout. We let 1{ · } stand for the indicator function such that
1{A} = 1 if the event A is true, and 0 otherwise. ⇒ and →

denote ‘converge(s) weakly’ and ‘converge(s) to’, respectively, and
d
= denotes equality in distribution. Further, ‖ · ‖ and ‖ · ‖∞ denote
the Euclidean and uniform metrics, respectively. We let C(A) and
D(A) be the spaces of continuous and cadlag mappings from a set
A to R, respectively, and we endow these spaces with Billingsley’s
(1968, 1999) or Bickel andWichura’s (1971)metric.We denote the
unit interval as I := [0, 1].

2. Testing the IID hypothesis

2.1. Maintained assumptions

We begin by collecting together assumptions maintained
throughout and proceed with our discussion based on these. We
first specify the data generating process (DGP) and a parameterized
function whose behavior is of interest.
A1 (DGP): Let (Ω, F , P) be a complete probability space. For m ∈

N, {Xt : Ω → Rm, t = 1, 2, . . .} is a stochastic process on
(Ω, F , P).
A2 (Parameterization): For d ∈ N, let Θ be a non-empty convex
compact subset of Rd. Let h : Rm

× Θ → R be a function such
that (i) for each θ ∈ Θ, h(Xt( · ), θ) is measurable; and (ii) for each
ω ∈ Ω, h(Xt(ω), · ) is such that for each θ, θ′

∈ Θ, |h(Xt(ω), θ) −

h(Xt(ω), θ′)| ≤ Mt(ω)‖θ−θ′
‖,whereMt ismeasurable and is OP(1),

uniformly in t .
Assumption A2 specifies that Xt is transformed via h. The Lipschitz
condition of A2(ii) is mild and typically holds in applications
involving estimation. Our next assumption restricts attention to
continuously distributed random variables.
A3 (Continuous random variables): For given θ∗ ∈ Θ, the random
variables Yt := h(Xt , θ∗) have continuous cumulative distribution
functions (CDFs) Ft : R → I, t = 1, 2, . . . .

Our main interest attaches to distinguishing the following
hypotheses:

H0 : {Yt : t = 1, 2, . . .} is an IID sequence;
vs. H1 : {Yt : t = 1, 2, . . .} is not an IID sequence.

UnderH0, Ft ≡ F (say), t = 1, 2, . . . . We separately treat the cases
in which F is known or unknown. In the latter case, we estimate F
using the empirical distribution function.
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