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a b s t r a c t

This paper illustrates how the use of random set theory can benefit partial identification analysis. We
revisit the origins of Manski’s work in partial identification (e.g., Manski (1989, 1990)) focusing our
discussion on identification of probability distributions and conditional expectations in the presence
of selectively observed data, statistical independence and mean independence assumptions, and shape
restrictions. We show that the use of the Choquet capacity functional and the Aumann expectation
of a properly defined random set can simplify and extend previous results in the literature. We pay
special attention to explaining how the relevant random set needs to be constructed, depending on the
econometric framework at hand.We also discuss limitations in the applicability of specific tools of random
set theory to partial identification analysis.
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1. Introduction

Overview. Partial identification predicates that econometric
analysis should include the study of the set of values for a pa-
rameter vector (or statistical functional) of interest which are
observationally equivalent, given the available data and credible
maintained assumptions.We refer to this set as the parameter vec-
tor’s sharp identification region.1 This principle is perhaps best sum-
marized in Manski’s (2003) monograph on Partial Identification of
Probability Distributions, where he states: ‘‘It has been common-
place to think of identification as a binary event – a parameter
is either identified or it is not – and to view point identification

✩ This paperwas prepared for the Northwestern University/CeMMAP conference,
Identification and Decisions, in honour of ChuckManski on his 60th birthday, held at
Northwestern University in May 2009. We thank the seminar participants there,
at Penn State, UCL, the ZEW Workshop ‘‘Measurement Errors in Administrative
Data’’, the 2010 European Meetings of Statisticians, Adam Rosen, Joerg Stoye,
two anonymous referees, and a guest co-editor for comments that helped us
to improve this paper significantly. We are grateful to Darcy Steeg Morris for
excellent research assistance. Beresteanu gratefully acknowledges financial support
from the NSF through Grants SES-0617559 and SES-0922373. Molchanov gratefully
acknowledges financial support from the Swiss National Science Foundation Grants
No. 200021-117606 and No. 200021-126503. Molinari gratefully acknowledges
financial support from the NSF through Grants SES-0617482 and SES-0922330.
∗ Corresponding author.

E-mail addresses: arie@pitt.edu (A. Beresteanu), ilya@stat.unibe.ch
(I. Molchanov), fm72@cornell.edu (F. Molinari).
1 This region contains all the parameters’ values that could generate the same

distribution of observables as the one in the data, for some data generating process
consistent with all the maintained assumptions, and no other values.

as a precondition for meaningful inference. Yet there is enormous
scope for fruitful inference using data and assumptions that par-
tially identify population parameters’’ (p. 3). Following this basic
principle, partial identification analysis, whether applied for pre-
diction or for decision making, aims at: (1) obtaining a tractable
characterization of the parameters’ sharp identification region;
(2) providing methods to estimate it; (3) conducting test of hy-
potheses and making confidence statements about it.

While conceptually these aims imply a fundamental shift of
focus from single valued to set valued objects, in practice they
have been implemented using ‘‘standard’’ mathematical tools,
such as probability distributions, conditional and unconditional
expectations, laws of large numbers and central limit theorems
for (single valued) random vectors. This approach has been very
productive in many contexts; see, for example, Manski (1995,
2007) and Haile and Tamer (2003) for results on identification,
and Imbens and Manski (2004), Chernozhukov et al. (2007),
Stoye (2009) and Andrews and Soares (2010) for results on
statistical inference. However, certain aspects of the study of
identification and statistical inference in partially identified
models can substantially benefit from, and be simplified by,
the use of mathematical tools borrowed from the theory of
random sets (Molchanov, 2005). This literature originated in the
seminal contributions of Choquet (1953–1954), Aumann (1965)
andDebreu (1967), and its first self-contained treatmentwas given
by Matheron (1975). It has been an area intensely researched in
mathematics and probability ever since.

The applicability of random set theory to partial identifi-
cation is due to the fact that partially identified models are
often characterized by a collection of random outcomes (or co-
variates) which are consistent with the data and the maintained
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assumptions. To fix ideas, suppose that one wants to learn a fea-
ture of the distribution of an outcome variable y conditional on
covariates w. Let w be perfectly observed and y be interval mea-
sured, with P (y ∈ [yL, yU ]) = 1. In the absence of assumptions
on how y is selected from [yL, yU ], the distribution P (y|w) is par-
tially identified. The collection of random variables ỹ such that
P


ỹ ∈ [yL, yU ]


= 1, paired withw, gives all the random elements

that are consistent with the data and themaintained assumptions;
hence, the collection of random elements which are observation-
ally equivalent. In the language of randomset theory, these random
elements constitute the family of selections of a properly specified
randomclosed set; in this example, [yL, yU ]×w.2 Depending on the
specific econometric model at hand, different features of the ob-
servationally equivalent random elementsmight be of interest; for
example, their distributions or their expectations. Random set the-
ory provides probability ‘‘distributions’’ (capacity functionals) and
conditional and unconditional (Aumann) ‘‘expectations’’ for ran-
dom sets, which can be employed to learn the corresponding fea-
tures of interest for the family of their selections, and hence for the
observationally equivalent random elements of interest. The main
task left to the researcher is to judiciously construct the relevant
random set to which these tools need to be applied. In turn, this
leads to characterizing the sharp identification region of a model’s
parameters in the space of sets, in a manner which is the exact
analog of how point-identification arguments are constructed for
point identified parameters in the space of vectors. Laws of large
numbers and central limit theorems for random sets can then be
used to conduct statistical inference, again in a manner which is
the exact analog in the space of sets of how statistical inference is
conducted for point identified parameters in the space of vectors.

The fundamental goal of this paper is to explain when and how
the theory of random sets can be useful for partial identification
analysis. In order to make our discussion as accessible as possible,
and relate it to the origins of Manski’s work on the topic (e.g.,
Manski (1989, 1990)), we focus our analysis on identification in
the presence of interval outcome data, paying special attention to
the selection problem. Statistical considerations can be addressed
using the methodologies provided by Beresteanu and Molinari
(2008), Galichon and Henry (2009b), Chernozhukov et al. (2007,
2009), Andrews and Shi (2009) and Andrews and Soares (2010),
among others, aswe discuss in Section 4 below. Some of the results
that we report have already been derived by other researchers
(specifically, the results in Proposition 2.2, part of 2.4, 3.2, C.2 and
C.3). We rederive these basic results, as this helps make plain the
connection between random set theory and standard approaches
to partial identification.We then provide a number of novel results
which are simple extensions of these basic findings, if derived
using random set theory, but would not be as easy to obtain if
using standard techniques, thereby showcasing the usefulness of
our approach (specifically, the results novel to this paper appear
in Proposition 2.3, part of 2.4, 2.5, 2.6, 3.3, C.1 and C.4). We also
pay special attention to explaining how the relevant randomclosed
set needs to be defined, depending on the econometric framework
at hand. As it turns out, this boils down to the same careful
exercise in deductive logic, based on the maintained assumptions
and the available data, which characterizes all partial identification
analysis. Finally, we discuss limitations in the applicability of
random set theory to partial identification.

Related Literature applying random sets theory in econometrics.
While sometimes applied in microeconomics, the theory of
random sets has not been introduced in econometrics until
recently. The first systematic use of tools from this literature in

2 We formally define the family of selections of a random closed set in
Appendix A.

partial identification analysis appears in Beresteanu and Molinari
(2006, 2008). They study a class of partially identified models
in which the sharp identification region of the parameter vector
of interest can be written as a transformation of the Aumann
expectation of a properly defined random set. For this class
of models, they propose to use the sample analog estimator
given by a transformation of a Minkowski average of properly
defined random sets. They use limit theorems for independent
and identically distributed sequences of random sets, to establish
consistency of this estimator with respect to the Hausdorff
metric. They propose two Wald-type test statistics, based on the
Hausdorff metric and on the lower Hausdorff hemimetric, to test
hypothesis andmake confidence statements about the entire sharp
identification region and its subsets. And they introduce the notion
of ‘‘confidence collection’’ for partially identified parameters as a
counterpart to the notion of confidence interval for point identified
parameters.

General results for identification analysis are given by
Beresteanu et al. (2008, 2009, in press), who provide a tractable
characterization of the sharp identification region of the parame-
ters characterizing incomplete econometric models with convex
moment predictions. Examples of such models include static,
simultaneous move finite games of complete and incomplete in-
formation in the presence of multiple equilibria; random utility
models ofmultinomial choice in the presence of interval regressors
data; and best linear predictors with interval outcome and covari-
ate data. They show that algorithms in convex programming can
be exploited to efficiently verify whether a candidate parameter
value is in the sharp identification region. Their results are based
on an array of tools from random set theory, ranging from con-
ditional Aumann expectations, to capacity functionals, to laws of
large numbers and central limit theorems for random closed sets.

Galichon and Henry (2006, 2009b) provide a specification test
for partially identified structural models. In particular, they use
a result due to Artstein (1983), discussed in Section 2 below, to
conclude that the model is correctly specified if the distribution
of the observed outcome is dominated by the Choquet capacity
functional of the random correspondence between the latent
variables and the outcome variables characterizing the model.
This allows them to extend the Kolmogorov–Smirnov test of
correct model specification to partially identified models. They
then define the notion of ‘‘core determining’’ classes of sets,
to find a manageable class of sets for which to check that the
dominance condition is satisfied. They also introduce an equivalent
formulation of the notion of a correctly specified partially
identified structural model, based on optimal transportation
theory, which provides computational advantages for certain
classes of models.3

Structure of the paper. In Section 2 we address the problem of
characterizing the sharp identification region of probability distri-
butions from selectively observed data, when the potential out-
come of interest is statistically independent from an instrument,
and when it satisfies certain shape restrictions. In doing so, we ex-
tend the existing literature by allowing the instrument to have a
continuous distribution, by allowing formore than two treatments,
and by deriving sharp identification regions for the entire response
function both under independence assumptions and shape restric-
tions. The fundamental tool from random set theory used for this
analysis is the capacity functional (probability distribution) of a
properly specified random set. In Section 3we address the problem
of characterizing the sharp identification region of conditional ex-
pectations from selectively observed data, in the presence of mean

3 For example, this occurs in finite static games of complete information where
players use only pure strategies and certain monotonicity conditions are satisfied.
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