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a b s t r a c t

This paper dealswithmodels allowing for trending processes and cyclical componentwith error processes
that are possibly nonstationary, nonlinear, and non-Gaussian. Asymptotic confidence intervals for the
trend, cyclical component, and memory parameters are obtained. The confidence intervals are applicable
for a wide class of processes, exhibit good coverage accuracy, and are easy to implement.
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1. Introduction

To start, consider the basic model

Xt = β1 + β2t + ut , t = 1, 2, . . . , n, (1.1)

where E (ut) = 0. When {ut} is a long memory stationary process,
with memory parameter d ∈ (−1/2, 1/2), the problem of esti-
mating such models has been studied extensively in the literature.
Yajima (1988, 1991) derived conditions for consistency and
asymptotic normality of Least Squares (LS) estimators of the pa-
rameters of a regression model with nonstochastic regressors,
when the errors {ut} have long memory. Dahlhaus (1995) sug-
gested an efficient weighted least squares estimator for β1 and β2
and investigated its asymptotic properties in the case of a polyno-
mial regression with stationary errors. Nonlinear regression mod-
els with longmemory errors have been investigated by Ivanov and
Leonenko (2004, 2008). The estimation of a trend when {ut} has
d ∈ [0, 3/2) was discussed by Deo and Hurvich (1998), but they
did not estimate d and they required {ut} to have a linear structure
with restrictive asymptotic weights.
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There is a large literature on the estimation of d in the case of
long memory. Fewer papers have so far considered an extended
range for d to include regions of nonstationarity. Assuming that
{ut} is observed, to estimate d, Velasco (1999, 2003) used data
differencing and data tapering, and he noted that this inflates
the estimator’s variance. Robinson (2005) suggested an adaptive
semiparametric estimation method for the case of a polynomial
regression with fractionally-integrated errors, employing in his
Monte Carlo study a tapered estimate of d. An alternative
approach was developed by Shimotsu and Phillips (2005) who
introduced an exact local Whittle estimation method based of
fractional differencing of {ut}, which is valid when a nonstationary
process {ut} is generated by a linear process. Abadir et al. (2007)
extended the classical Whittle estimator to the Fully-Extended
Local Whittle (FELW) estimator that is valid for a wider range of
d values, allowing for nonstationary {ut} but not for deterministic
components.

The present papers focuses on the estimation of the linear
regression model (1.1) and its extended version

Xt = β1 + β2t + β3 sin(ωt)+ β4 cos(ωt)+ ut ,

t = 1, 2, . . . , n, (1.2)

which allows for stationary and nonstationary errors {ut} and a
cyclical componentwithω ∈ (0, π).We assume thatω is known in
(1.2), and sowe treat separately the boundary caseω = 0 asmodel
(1.1), effectively covering ω ∈ [0, π) in the paper but not the
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unrealistic case ofω = π that leads to Xt = β1 +β2t +β4 (−1)t +
ut . We do not propose a method of estimation for ω; see Nandi
and Kundu (2003) and references therein for the estimation ofω in
the context of a short memory linear process and no linear trend.
Estimating ω is beyond the scope of this paper, though (as we will
show) our procedure allows for time-varying ω and/or multiple
cyclical components with different frequencies ω•. For expository
purposes, we refrain from writing these features into the model
given in this introduction.

In this paper, we estimate β := (β1, β2, β3, β4)
′ by LS and gen-

eralize (for the presence of trend and cycle) the Fully-Extended Lo-
cal Whittle (FELW) estimator of d given in Abadir et al. (2007). We
also provide a simpler alternative form for the FELW estimator.We
show that our estimators are consistent andweobtain their rates of
convergence and limiting distributions, aswell as confidence inter-
vals based on them. The asymptotic properties of our LS estimators
of β1, β2 turn out to be unaffected by (and robust to) the unknown
cyclical component.

The papers listed earlier require the assumptions of linearity
or Gaussianity of the error process. However, our estimation
procedure allows for a wide range of permissible values of the
memory parameter d and for possibly nonstationary, nonlinear,
and nonnormal processes {ut}. By virtue of {ut} being modelled
semiparametrically, the procedure also allows for seasonality
and other effects to be present in {ut} at nonzero spectral
frequencies.

In Section 2, we investigate the LS estimators of β1, β2, β3, β4,
while Section 3 is concerned with the parameters of the process
{ut}. Section 4 contains the results of simulation experiments
on the performance of the estimators suggested earlier. It is
technically straightforward to extend our results to higher-order
polynomials and to values of d outside the interval −1/2 < d <
3/2 to which we restrict our attention in this paper. We do not
report such extensions in order to simplify the exposition and
because most economic series will not require more than a linear
trend or d outside−1/2 < d < 3/2. The proofs of the main results
are given in the Appendix.

We use
p
−→ and

d
−→ to denote convergence in probability and in

distribution, respectively. We write i for the imaginary unit, 1A for
the indicator of a set A, ⌊ν⌋ for the integer part of ν, C for a generic
constant but c• for specific constants. The lag operator is denoted
by L, such that Lut = ut−1, and the backward difference operator
by∇ := 1−L.Wedefine a∧b := min {a, b} and a∨b := max {a, b}.

Definition 1.1. Let d = k + dξ , where k = 0, 1, 2, . . . and
dξ ∈ (−1/2, 1/2). We say that {ut} is an I(d) process (denoted
by ut ∼ I(d)) if

∇
kut = ξt , t = 1, 2, . . . ,

where the generating process {ξt} is a second order stationary
sequence with spectral density

fξ (λ) = b0 |λ|−2dξ + o(|λ|−2dξ ), as λ → 0 (1.3)

where b0 > 0.

Notice that there are two parameters of interest in this
definition, b0 and dξ .

2. Estimation of β

We will use Ordinary LS (OLS) estimation of β, because of its
ease of application, its consistency, and its asymptotic normality.
Feasible Generalized LS (GLS) applied to (1.1) would require us to
specify the autocovariance structure explicitly,which is not usually
known, so OLS is more in line with the semiparametric approach
of our paper. Even so, assuming the autocovariance structure is

known and is correctly specified, it has been shown that the loss of
efficiencywill not be substantial in this context. For example, Table
1 of Yajima (1988) implies that the maximal loss of asymptotic
efficiency by OLS compared to the BLUE is 11% when estimating
β1 and β2, and 2% when estimating the mean of the differenced
data (hence β2 of the original data). These will correspond to our
cases d ∈ (−1/2, 1/2) and d ∈ (1/2, 3/2), respectively, as will be
seen later. These efficiency bounds apply to GLS as well, since it is
a linear estimator, thus limiting the efficiency loss of OLS relative
to GLS.

Below it will be shown that the rates of convergence of the
OLS estimators depend on the order of integration d of ut , and
their limits depend on the long run variance s2ξ of {ξt} which needs
to be estimated. Property (1.3) of the spectral density fξ implies
that

s2ξ = lim
n→∞

E


n−1/2−dξ

n−
t=1

ξt

2

= lim
n→∞

n−1−2dξ

∫ π

−π


sin(nλ/2)
sin(λ/2)

2

fξ (λ)dλ

= p(dξ )b0, (2.1)
where b0 is defined in (1.3) and

p(d) :=

∫
∞

−∞


sin(λ/2)
λ/2

2

|λ|−2ddλ

=

2
Γ (1 − 2d) sin(πd)

d(1 + 2d)
, if d ≠ 0,

2π, if d = 0.

To derive the asymptotic distribution of estimators of (β1, β2), we
introduce the following condition on the generating process {ξt} of
Definition 1.1.

Assumption FDD. The finite-dimensional distributions of the
process

Yn(r) := n−1/2−dξ
⌊nr⌋+1−
t=1

ξt , 0 ≤ r ≤ 1 (2.2)

converge to those of the Gaussian process Y∞(r), that is,

Yn(r)
d
−→ Y∞(r), as n → ∞.

Assumption FDD together with asymptotic (1.3) of spectral
density fξ imply that
Y∞(r) = sξ J1/2+dξ (r), 0 ≤ r ≤ 1,
where J1/2+dξ (r) is a fractional Brownian motion. By definition,
J1/2+dξ (r) is a Gaussian process with zero mean and covariance
function
Rd(r, s) := E


J1/2+dξ (r)J1/2+dξ (s)


=

1
2
(r1+2dξ + s1+2dξ − |r − s|1+2dξ ), 0 ≤ r, s ≤ 1. (2.3)

2.1. Model (1.1)

In order to estimate the slope parameter β2 and the location
parameter β1 of model (1.1), we use the OLS estimators

β2 =

n∑
t=1
(Xt − X̄)(t − t̄)

n∑
t=1
(t − t̄)2

(2.4)

andβ1 = X̄ −β2 t̄, (2.5)
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