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a b s t r a c t

This paper proposes a robustification of the test statistic of Aït-Sahalia and Jacod (2009b) for the presence
of market microstructure noise in high frequency data, based on the pre-averaging method of Jacod et al.
(2010). We show that the robustified statistic restores the test’s discriminating power between jumps
and no jumps despite the presence of market microstructure noise in the data.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The recent availability of observations on financial returns at
increasingly higher frequencies has prompted the development of
methodologies designed to test the specification of suitablemodels
for these data. Motivated both by mathematical tractability and
the need to avoid introducing arbitrage opportunities in themodel,
semimartingales are often employed.

We focus here on testing for the presence of jumps in a
discretely observed semimartingale, which has been among the
first issue to be considered in the literature. Existing tests for jumps
include Aït-Sahalia (2002) (based on the transition function of
the process), Carr and Wu (2003) (based on short dated options),
Barndorff-Nielsen and Shephard (2004); Huang and Tauchen
(2005) and Andersen et al. (2007) (based on bipower variations),
Jiang and Oomen (2008) (based on a swap variance), Lee and
Mykland (2008) and Lee and Hannig (2010) (based on detecting
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large increments) and Aït-Sahalia and Jacod (2009b) (based on
power variations sampled at different frequencies).

When implemented on high frequency data, as most of them
are designed to be, these tests are confronted by the presence
of market microstructure noise. Furthermore, that measurement
error tends to grow in proportion of the observed increments of the
process as the sampling frequency increases, which distinguishes
this problem from the classical measurement error problem in
statistics.

This issue has received a fair amount of attention in the
recent literature, but focused on the base case of quadratic
variation estimation. Considering only methods that are robust
to the simplest forms of market microstructure noise, there are
currently four main approaches to quadratic variation estimation:
maximum likelihood estimation (Aït-Sahalia et al., 2005; Xiu,
2010), linear combination of realized volatilities obtained by
subsampling (Zhang et al., 2005; Zhang, 2006), linear combination
of autocovariances (Barndorff-Nielsen et al., 2008) and pre-
averaging (Jacod et al., 2009, 2010). The simplest forms of noise
include additive errors and rounding, and combinations thereof.
Robust estimators are available as long as the noise is sufficiently
‘‘smooth’’; a pure rounding error is not. Attempting to generalize
the type of noise allowed to an ‘‘unsmooth’’ setting raises a
different set of issues that are beyond the scope of this paper (see
Li and Mykland (2007) for a discussion).

All the tests developed so far for jumps assume away the
presence of noise in high frequency data. In this paper, we examine
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the possibility of robustifying one of these tests for jumps, that
of Aït-Sahalia and Jacod (2009b), using the pre-averaging method.
The test, whose asymptotic properties were originally derived
without allowing for the possibility of noise, is based on comparing
variations of power greater than 2, at two different frequencies,
and taking their ratio. If jumps are present, the two variations
converge asymptotically as 1n → 0 to the same limit, which is
simply the sum of the pth power of the jumps recorded between 0
and T ; as a result their ratio converges to 1. On the other hand, if no
jumps are present, the sum of the pth power of the jumps recorded
between 0 and T is zero, and both variations then converge to 0.
They do so at a rate that depends on the sampling interval1n and
so the ratio will pick up the difference between the two sampling
frequencies: if the two sampling intervals are1n and k1n, then the
limit of the ratio will be kp/2−1. Therefore, without noise, the test
statistic has two sharply distinct limits depending upon whether
jumps are present or not.

In the presence of noise, on the other hand, the theoretical
limits of the statistic become respectively 1/k and 1/k1/2 in the
two polar cases of additive noise and noise due to rounding error,
and become so irrespectively of the presence or absence of jumps
(see Aït-Sahalia and Jacod (2009b)). As a result, when either type of
noise dominates, the test statistic loses its intended effectiveness
at discriminating between presence and absence of jumps.

In this paper, we construct a robustified version of the statistic,
using the pre-averaging approach, and show that this robustifica-
tion restores the ability of the test to discriminate between jumps
and no jumps, despite the presence of the noise. The results are
nonparametric in nature, are valid for almost unrestricted semi-
martingales, and allow for a symmetric treatment of the two null
hypotheses specifying either presence or absence of jumps.

The paper is organized as follows. Section 2 presents the
model’s setting and assumptions. Section 3 presents the test
statistic, studies its properties when noise is taken into account,
describes its robustification by pre-averaging and derives its
asymptotic properties after robustification. Sections 4 and 5 report
the results of simulations and of an empirical application to high
frequency stock returns data. Section 6 concludes, while proofs are
in the Appendix.

2. The model

2.1. The underlying process

We consider a one-dimensional underlying process X =

(Xt)t≥0, sampled at regularly spaced discrete times i1n over a fixed
time interval [0, T ], with a time lag which asymptotically goes to
0. In typical financial econometrics applications, X represents the
logarithm of an asset price. The basic assumption is that X is an Itô
semimartingale on a filtered space (Ω(0),F (0), (F

(0)
t ), P(0)), which

means that it can be written as

Xt = X0 +

 t

0
bsds +

 t

0
σsdWs

+ (δ1{|δ|≤1}) ⋆ (µ− ν)t + (δ1{|δ|>1}) ⋆ µt
, (2.1)

where W is a Brownian motion, µ is a Poisson random measure
on R+ × E and its compensator is ν(dt, dz) = dt ⊗ λ(dz) where
(E, E) is an auxiliary space and λ is a σ -finite measure (all these
are defined on the filtered space above andwe refer for example to
Jacod and Shiryaev (2003) for all unexplained terms). We further
assume:

Assumption 1. (a) The process (bt) is optional and locally
bounded;

(b) The process (σt) is càdlàg (i.e., right-continuous with left
limits) and adapted;

(c) The function δ is predictable, and there is a bounded function
γ in L2(E, E, λ) such that the process supz∈E(|δ(ω

(0), t, z)| ∧

1)/γ (z) is locally bounded;
(d) We have almost surely

 t
0 σ

2
s ds > 0 for all t > 0.

In particular, when X is continuous, it has the form

Xt = X0 +

 t

0
bsds +

 t

0
σsdWs. (2.2)

In this case, wewill sometimes need a stronger assumption putting
some further structure on the stochastic volatility process, namely:

Assumption 2. We have Assumption 1 and σt is also an Itô
semimartingale which can be written as

σt = σ0 +

 t

0
b̃sds +

 t

0
σ̃sdWs + Mt +


s≤t

1σs 1{|1σs|>v}, (2.3)

where M is a local martingale orthogonal to W and with
bounded jumps and ⟨M,M⟩t =

 t
0 asds, and the compensator

of


s≤t 1{|1σs|>v} is
 t
0 a′

sds, and where b̃t , at , and a′
t are optional

locally bounded processes, whereas the adapted processes bt and
σ̃t are left-continuous with right limits.

Overall, these assumptions are standard and fairly unrestrictive.
They do not significantly restrict the essential aspects of the
process, allowing for stochastic volatility, jumps of finite or infinite
activity, all manners of dependence between the characteristics of
the process, etc. Of course, they do exclude some examples such
as fractional Brownian motion or models without a continuous
martingale part, given (d) in Assumption 1. We need the latter
requirement to avoid degenerate limiting theorems under the null
hypothesis where no jumps are present.

2.2. The noise

The main purpose of this paper is to test for the presence of
jumps when the process X is observed with an error: instead of
Xt we now observe

Zt = Xt + ϵt . (2.4)

Of course, the observation error ϵt comes into the picture only at
those observation times t = i1n, but it is convenient to have it de-
fined for all t . We assume that the observation error is, condition-
ally on the process X , mean zero and mutually independent. Note
however that the ϵt ’s are not necessarily unconditionally indepen-
dent (the independence is only conditional on X). The assumption
we will make on the noise term allows for an additive error of the
white noise type, but also for noise involving rounding since the
assumptions allow the noise ϵt to depend on Xt , or in fact even on
the whole past of X up to time t .

Mathematically speaking, this can be formalized as follows:
for each t ≥ 0, we have a transition probability Qt(ω

(0), dz)
from (Ω(0),F

(0)
t ) into R. The space Ω(1)

= R[0,∞) is endowed
with the product Borel σ -field F (1) and the ‘‘canonical process’’
(ϵt : t ≥ 0) and the probability Q(ω(0), dω(1)) which is the prod-
uct ⊗t≥0 Qt(ω

(0), ·). We introduce the filtered probability space
(Ω,F , (Ft)t≥0, P) and the filtration (Gt) as follows:

Ω = Ω(0)
×Ω(1), F = F (0)

⊗ F (1),

Ft = F
(0)
t ⊗ σ(ϵs: s ∈ [0, t)),

Gt = F (0)
⊗ σ(ϵs: s ∈ [0, t)),

P(dω(0), dω(1)) = P(0)(dω(0))Q(ω(0), dω(1)).

 (2.5)
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