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a b s t r a c t

Linear cointegration is known to have the important property of invariance under temporal translation.
The same property is shown not to apply for nonlinear cointegration. The limit properties of the
Nadaraya–Watson (NW) estimator for cointegrating regression under misspecified lag structure are
derived, showing the NWestimator to be inconsistent, in general, with a ‘‘pseudo-true function’’ limit that
is a local average of the true regression function. In this respect nonlinear cointegrating regression differs
importantly from conventional linear cointegration which is invariant to time translation. When centred
on the pseudo-true function and appropriately scaled, the NW estimator still has a mixed Gaussian limit
distribution. The convergence rates are the same as those obtained under correct specification (


h
√
n,

h is a bandwidth term) but the variance of the limit distribution is larger. The practical import of the
results for index models, functional regression models, temporal aggregation and specification testing
are discussed. Two nonparametric linearity tests are considered. The proposed tests are robust to dynamic
misspecification. Under the null hypothesis (linearity), the first test has a χ2 limit distribution while the
second test has limit distribution determined by the maximum of independently distributed χ2 variates.
Under the alternative hypothesis, the test statistics attain a h

√
n divergence rate.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Arguably, all econometric models abstract from reality and are
potentially misspecified in uncertain ways. Even if the form of an
econometric model were to accurately characterise reality, there
is still a myriad of ways in which the generating mechanism for
the observed data can depart from the posited model. Therefore,
it is important to know the limit properties of various estimators
when the underlying model is misspecified. A series of papers
in the econometric and statistics literature attempts to cast light
on this problem. See for example Berk (1966, 1970), Domowitz
and White (1982), Gourieroux et al. (1984), Huber (1967), White
(1981, 1982) inter alia. Some of the questions raised by the
aforementioned papers are summarised by White (1982):

‘‘If one does not assume that the probability model is correctly
specified, it is natural to ask what happens to the properties of the
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[maximum likelihood] estimator. Does it still converge to some limit
asymptotically, and does this limit have anymeaning? If the estimator
is somehow consistent, is it also asymptotically normal?’’

It is well known that, under certain conditions, parametric
estimators of stationary misspecified models have a well defined
limit referred to in the econometric literature as a pseudo-true
value.1 The asymptotic analysis of misspecified models is not
only of theoretical interest. To obtain asymptotic power rates
for various specification tests e.g. Bierens (1990), Ramsey (1969)
(or tests without a specific alternative) knowledge about the
asymptotic behaviour of the estimator under misspecification is
necessary. Moreover, to determine the limit distribution of certain
model selection statistics under the null hypothesis, e.g. Cox (1961,
1962), Davidson and McKinnon (1981) and Voung (1989) (tests

1 The pseudo-true value can be different than the parameter of interest and is
determined by the value that optimises a certain limit criterion function (see for
example Huber, 1967; Akaike, 1973; White, 1982; Bierens, 1984).
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with a specific alternative), the estimator’s limit distribution about
the pseudo-true value, is required.

The current paper takes theWang and Phillips (2009a, hereafter
WP)2 framework and analyses the effects of misspecification re-
lating to the lag structure of a cointegrating model. Further, two
nonparametric linearity tests that are robust to dynamic misspeci-
fication are proposed. This kind of dynamic misspecification is po-
tentially relevant in a variety of contexts and is especially germane
in situations where temporal aggregation issues arise. We show
that the consequences of dynamic misspecification in a nonsta-
tionary framework largely depend on the nature of the regression
function and on the nature of the functions involved in the estima-
tion procedure (see Theorem 1 and Example 1). The current work
also relates to Phillips (2009) and Kasparis (2011). Phillips (2009)
analyses spurious nonparametric regression,while Kasparis (2011)
considers the effects of functional form misspecification in the
presence of stochastic trends.

One of the main results of the present paper is to show that the
Nadaraya–Watson (NW) kernel estimator under dynamicmisspec-
ification exhibits inconsistency in nonstationary regression due to
the use of integrable functions in the construction of the kernel re-
gression function. It will be shown that, under certain regularity
conditions, the effect of the lag misspecification is to induce a shift
in the limit, based on a local average of the function around each
regression point (i.e. the NW estimator has a pseudo-true function
limit). This kind of behaviour is similar to the limit in the case of
misspecified dynamics in a stationary time series setting. In this re-
spect, we find analogous results for dynamically misspecified non-
parametric models between stationary and nonstationary cases.
On the other hand, there is a big difference betweennonlinear coin-
tegrationmodelswhere dynamicmistiming induces inconsistency,
as shown here, and linear cointegrationmodels where consistency
continues to hold under dynamic mistiming.

The NW estimator, when centred on the pseudo-true function
and appropriately scaled, has a mixed Gaussian limit distribution.
The convergence rates are the same as those reported by WP.
Nevertheless, the variance of the limit distribution is larger than
that obtained under correct specification. We also consider the
case of severe dynamic misspecification where the lag differential
between the true and the fitted models is large. For badly
misspecified models, the limit theory is substantially different. In
this case, the NW estimator may be divergent, vanish or converge
to a limit involving some stochastic integral.

This kind of dynamic-induced inconsistency arises in many
other cases where the model and estimation procedure involves
integrable functions and timing issues are relevant in specification.
For example, the maximum likelihood estimator of discrete choice
models involves integrable functions (see Park and Phillips, 2000)
and will be similarly subject to the effects of dynamic specification
error. Issues of timing in dynamic specification are likely to be
particularly important in market intervention models of the type
studied in Hu and Phillips (2004).

Moreover, two linearity tests that are robust to dynamic mis-
specification are proposed. The test statistics under consideration
involve a comparison of the NW kernel estimator with paramet-
ric least squares. Asymptotic properties of the tests are derived.
Under the null hypothesis of linearity, the first test has a χ2 limit
distribution while the second test has a limit distribution deter-
mined by the maximum of independently distributed χ2 variates.
The tests are consistent against integrable and locally integrable
alternatives. The divergence rate is of order h

√
n.

2 Wang and Phillips (2009a) provide a limit theory for nonparametric cointegrat-
ing regression. For related work see Guerre (2004), Karlsen et al. (2007), Schienle
(2008) and Wang and Phillips (2009b, 2011).

The remainder of the paper is organised as follows. Section 2
provides limit theory for kernel regression under dynamic
misspecification. Section 3 provides some applications in contexts
of interest for applied work. Section 4 develops linearity tests
that are robust to dynamic misspecification. The finite sample
properties of the linearity tests are explored in a simulation
experiment. Section 5 concludes. Technical results and proofs are
given in the Appendices. Notation is fairly standard. For instance,
we use a ∨ b (a ∧ b) to denote the maximum (minimum) of two
real numbers a and b, and =d represents distributional equality.
Throughout the paper summations such as

n
t≥1 are interpreted as

sums over 1 ≤ r∨s∨ l ≤ nwhenever there are integer parameters
such as r , s, l governing the initialisation. Finally, I denotes the
integrable family of functions, and LI denotes the locally integrable
family of functions, that are not integrable.

2. Kernel regression under dynamic misspecification

This section develops a limit theory for the Nadaraya–Watson
kernel regression estimator in the case of dynamic misspecifi-
cation. It is well known (e.g. White, 1981, 1982; Domowitz and
White, 1982) that, under certain regularity conditions, paramet-
ric estimators of misspecified models converge to some well
defined pseudo-true value that is typically different than the pa-
rameter of interest. In the current paper it is demonstrated that,
when the fitted model suffers from dynamic misspecification, and
under certain regularity conditions, the NW estimator has a well
defined limit. When the dynamicmisspecification is mild — that is,
the lag differential between the true models is finite — the NW has
a pseudo-true function limit. The pseudo-true function corresponds
to the true regression function as long as the latter is linear. In gen-
eral the pseudo-true function differs from the true function and is
determined by some local average of the true regression function. If
dynamic misspecification is severe in the sense that the lag differ-
ential between the true and fitted models goes to infinity in large
samples there is no pseudo-true function limit. In this case, the NW
diverges, vanishes or converges to some random limit, depending
on the properties of the true regression function.

Next, we specify the model under consideration. Throughout
the paper, we assume that the time series {yt}nt=1 is generated by
the model:

yt = f (xt−r) + ut , for some integer lag r ≥ 0, (1)

where f is a locally integrable regression function. The variable
xt is a nonstationary process defined on some probability space
(Ω, F , P). For example, in many applications it will be sufficient
for {xt}nt=1 to be generated as a unit root process or as a near
integrated array of the commonly used form

xt = ρnxt−1 + vt , x0 = 0, (2)

where vt is some error term whose properties are specified
later (Assumptions 2.2 and 2.3 below) and ρn = 1 −

co
n for some

constant co. To avoid unnecessary triangular array complications in
the development that follows we focus on the unit root generating
model for xt , although our main results continue to hold with
minor changes under (2). The regression error ut is a martingale
difference sequence. Both xt and ut are defined on the probability
space (Ω, F , P). The exact properties of f , xt and ut will be
specified in detail later.

We concentrate on the case where a version of (1) is fitted
by nonparametric kernel regression. However, the fitted model
involves a lag misspecification resulting from incorrect timing, so
that the fitted model has the (lag misspecified) form

yt = f̂ (xt−s) + ût , for some fixed integer lag s ≥ 0, r ≠ s, (3)
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