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a b s t r a c t

The Inverse Finite Element Method (IFEM) for degenerate solid shells is introduced. IFEM allows deter-
mining the undeformed shape of a body (in this case, a shell-like body) such that it attains a desired shape
after large elastic deformations. The model is based on the degenerate solid approach, which enables the
use of the standard constitutive laws of Solid Mechanics. First, IFEM is applied to three popular
benchmarks for validation purposes. Then, the capabilities of IFEM for inverse design are demonstrated
by means of its application to the design of a microvalve.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The Inverse Finite Element Method (IFEM) is the Finite Element
Method (FEM) applied to the problem of determining the unde-
formed configuration of a body when the deformed configuration
as well as the actuating loads are known. This kind of problem –
also known as the Inverse Design problem – often arises in the
design of compliant structures or mechanisms suffering large elas-
tic displacements and/or rotations, for instance: a gasket that
deforms to the desired shape under given loads [1]; a rubber seal
that closes a given channel under a given pressure [2]; a turbine
blade that attains an optimal shape at a certain angular speed
[3]; an S-clutch whose shoes exactly engage the friction surface
of a given drum at a given angular speed [4,5]; a device that folds
an intraocular lens in such a way that facilitates its implantation
into the eye [6], among other interesting applications developed
in the papers mentioned.

Outside the field of inverse design, Lu and Zhou [7,8] proposed
an application of IFEM to the prevention of aneurysms, taking the
in vivo image of an aneurysm as the known deformed configuration
under a known pressure.

All these inverse problems could be solved using systematized
‘‘trial-and-error’’ methods from Optimization Theory, considering
any measure of the closeness to the desired deformed

configuration as the cost function to be minimized. At each itera-
tion of the optimization problem, a nonlinear (direct) equilibrium
equation has to be solved to determine the cost function. In
contrast, IFEM solves only one nonlinear equilibrium equation to
determine the desired deformed configuration, which is approxi-
mately as computationally expensive as only one iteration of an
optimization problem. This was illustrated by Albanesi et al.
[4,5], who used IFEM to design a compliant gripper, which had
been originally designed by Lan and Cheng [9] by solving an
optimization problem.

In our previous papers, IFEM was introduced for 3D solids [3]
and 3D beams [4,5]. The current paper is a step towards the com-
pletion of our IFEM library by introducing shell elements.

Zhou and Lu [8] introduced IFEM for shells using the
stress-resultant approach proposed by Simo et al. [10]. Models
based in this approach need specialized constitutive equations
for the accross-the-thickness membrane and shear stress resul-
tants and stress couple, as described in the pioneering work of
Simo and Fox [11].

In the present paper, the degenerate solid approach to shells,
originally proposed by Ahmad et al. [12] and extended to nonlinear
geometrical analysis by Ramm [13], is preferred. This approach is
characterized by defining the stress itself (rather than the stress
resultants) using the same constitutive equations as those of
Solid Mechanics. This attribute of the degenerate solid shells was
the reason for our choice. Then, as an original contribution, we
introduce IFEM to the context of degenerate solid shells.
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The low-order displacement-based shell finite elements predict
spurious shear stresses and, as result, exhibit artificially high stiff-
ness. This is the well-known ‘‘shear locking’’ defect [14], which can
be circumvented by using the appropriate mixed finite elements. In
the present paper, recourse is made to the formulation known as
Mixed Interpolation of Tensorial Components (MITC), originally
proposed by Dvorkin and Bathe [15] for bi-linear 4-node quadran-
gles and extended by Bucalem and Bathe [16] to bi-quadratic
9-node and bi-cubic 16-node quadrangles. Using MITC, the compo-
nents of the strain tensor are interpolated independently of the
displacements, in order to preclude shear locking.

First, we solve three popular problems for linear-elastic shells
with large deflections and rotations [17], using these benchmarks
for the purpose of validating the presented IFEM. Finally, the capa-
bility of IFEM for inverse design is shown by the design of a com-
pliant microvalve to close a given channel when the pressure drop
attains a prescribed value, giving a more efficient alternative to
that originally proposed by Seidemann et al. [18].

2. Formulation of the degenerate solid shell finite element

The aim of this section is to give a brief summary of the formu-
lation of FEM for degenerate solid shells, which is already classical
in the ‘‘direct’’ FEM. Specifically, we describe the so-called ‘‘basic
shell’’ model [19,20], which is based on the Mindlin–Reissner
kinematic hypothesis: those straight fibers that are normal to the
midsurface of the shell when it is undeformed remain straight
and unstretched during deformation. The ‘‘basic shell’’ model is
well-suited for thin to moderately thick shells, offering the best
compromise between simplicity and applicability in FEM for shells.

As a corollary, we arrive at a system of discrete nonlinear equa-
tions governing the equilibrium of geometrically nonlinear degen-
erate solid shells in ‘‘direct’’ FEM, to be taken as the starting point
for the development of IFEM for degerate solid shells in the next
section.

2.1. Kinematic hypotheses for shells

Let B0 represent the solid shell body shown in Fig. 1. The geom-
etry of the shell is defined by its midsurface S0 and the thickness of
the shell at each point of the midsurface. Let fn1; n2; n3g be a system
of natural coordinates, such that n1 and n2 vary through the mid-
surface S0 and n3 varies across the thickness of the shell, with
�1 6 ni 6 1 and n3 ¼ 0 at the midsurface. Then, the position of
any point X 2 B0 can be expressed as a function of the natural coor-
dinates as follows:

Xðn1; n2; n3Þ ¼ Xðn1; n2Þ þ n3
H
2

Tðn1; n2Þ; ð1Þ

where X 2 S0; T is the unit vector known as the material director,
and H ¼ Hðn1; n2Þ is the thickness of the undeformed shell.

Let B be the deformed configuration of the shell, with midsur-
face S. After deformation, the point X 2 B0 occupies the position
x 2 B:

xðn1; n2; n3Þ ¼ �xðn1; n2Þ þ n3
h
2

tðn1; n2Þ; ð2Þ

where �x 2 S; t is the unit vector known as the spatial director, and
h ¼ hðn1; n2Þ is the thickness of the undeformed shell.

In the present paper, we adopt the ‘‘basic shell’’ model [19,20],
based on the Mindlin–Reissner plate theory, according to which t is
not necessarily normal to S if T is normal to S0 (and viceversa), as
an effect of the shear deformation. Further, as a consequence of the
Mindlin–Reissner assumption, the strain normal to the midsurface
is null [20], so that the thickness of the shell remains constant
during deformation, i.e., h ¼ H.

Inside a generic finite element with nodes i ¼ 1;2; . . . ;N, the
positions x 2 B and X 2 B0 are isoparametrically interpolated from
their respective nodal values, as follows:

Xðn1; n2; n3Þ ¼ uiðn1; n2Þ Xi þ
n3

2
hðn1; n2ÞT i

� �
¼ Uðn1; n2; n3ÞQ ; ð3Þ

xðn1; n2; n3Þ ¼ uiðn1; n2Þ �xi þ
n3

2
hðn1; n2Þti

� �
¼ Uðn1; n2; n3Þq; ð4Þ

with

U ¼ u1I3�3
n3
2 hu1I3�3 � � � uNI3�3

n3
2 huNI3�3

� �
; ð5Þ

Q ¼

X1

T1

..

.

XN

TN

266666664

377777775; q ¼

�x1

t1

..

.

�xN

tN

266666664

377777775; ð6Þ

where ðXi; T iÞ defines the position of node i in the finite element
mesh representing B0 (known for FEM, unknown for IFEM), ð�xi; tiÞ
defines the position of node i in the mesh representing B (unknown
for FEM, known for IFEM), and ui ¼ uiðn1; n2Þ is the 2-D shape func-
tion associated to node i; I3�3 is the 3� 3 identity matrix.

The deformation of the shell can be measured using the Green–
Lagrange strain tensor, which can be expressed as

E ¼ 1
2

ga � gb � Ga � Gb

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ecov
ab

Ga � Gb; ð7Þ

where Ecov
ab are the so-called covariant components of E; ga ¼ @x=@na

and Ga ¼ @X=@na are the spatial and convective basis vectors,
respectively, and Ga is a vector of the base reciprocal to fGag, so that
Ga � Gb ¼ da

b .

Using FEM, the covariant strain components Ecov
ab take the form

Ecov
ab ¼

1
2

qT Aabq� Q T AabQ
	 


; ð8Þ

where Aab is the 6N � 6N-symmetric matrix defined by

Aab ¼
1
2

@UT

@na

@U

@nb
þ @U

T

@nb

@U

@na

� �
: ð9Þ

2.2. The cure for shear locking

The stiffness of low-order finite elements increases spuriously
as the thickness/in-plane dimension of the element decreases.
This is the well-known ‘‘shear locking’’ problem, which affects even
cubic order elements.

Fig. 1. Geometric representation of the undeformed and deformed configurations
of a shell.
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