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A novel force identification method in state space based on the Galerkin weak formulation is proposed.
Using the time function interpolations of both displacement and force, the equation of motion of struc-
tural system in state space based on the principle of weighted momentum is formulated. The method is
more suitable for the cases of large time step and discontinuous loading compared with the conventional
state space method and the explicit Newmark method. Additionally, the proposed method is extended to
a refined version for the case of high noise level by dividing the time step into several smaller time
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1. Introduction

Accurate knowledge of the dynamic force on a structural system
during operation is vital in many structural dynamic problems,
such as structural dynamic design, response reconstruction, condi-
tion assessment and health monitoring. Unfortunately, in many
practical applications, a direct measurement of the input forces is
very difficult, especially the interaction forces between different
substructures of a large coupled structural system. In some situa-
tions, if force gauges are inserted into force transfer path to mea-
sure the excitations, it is difficult to obtain the accurate forces
since the existence of the force gauges may alter the system prop-
erties. And also, an impact force with large magnitude for a short
time period is difficult to be measured. Instead, vibration responses
can be conveniently measured. The indirect method of force iden-
tification, which is to perform an inverse identification process
with the measured structural responses and the known structural
system, is often used in practice. The force identification is an
important topic in structural dynamics. Existing force identifica-
tion methods can be mainly classified into two categories, the fre-
quency domain [1-6] and time domain methods [7-14]. The
frequency domain methods of estimating forces were originally
developed in the 1980s using the frequency response functions.
The forces are identified in frequency domain. To obtain the forces
in time domain, inverse Fourier transform is required. The inverse
transform makes those methods suitable for stable and stationary
random forces, but difficult to identify impact transient forces. The
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time domain methods identify the forces directly in time domain,
which have no transform errors and can be suitable for any types
of forces.

Most existing time domain force identification methods are
based on the state space method, which relates the structural
responses, the system parameters and the input forces with the
Markov parameters. Law and Fang [15] presented a state space
method for moving force identification. Kammer [16] and Law
et al. [17] adopted the zeroth order system Markov parameters
to identify the external forces. Nordberg and Gustafsson [18] pro-
posed an explicit block inversion algorithm to invert the associated
upper block triangular Toeplitz matrix for force identification using
the state space method. Mao et al. [19] established a precise force
identification model based on the precise time-step integration
and Tikhonov regularization technique. Law and Yong [20] used
the state space method to identify the interface forces and the
external forces for structural condition assessment. Recently, a
novel approach of force identification based on average accelera-
tion discrete algorithm was presented in the state space [21].
Although the state space method is not sensitive to the initial val-
ues and have no cumulative errors produced by the previous time
step compared with many other time domain force identification
method, it still has an obvious disadvantage. The method is explicit
and assumed that the force is a constant value in each discrete time
step. Therefore, the method is accurate only when the time step is
small enough.

To overcome this disadvantage, the conventional implicit
Newmark method for the forward dynamic analysis was trans-
formed into an equivalent explicit form for force identification
[22]. The explicit Newmark algorithm is more accurate compared
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with the conventional state space method, especially when the
sampling frequency is low. However, most of the existing direct
integration techniques [23,24] including the Newmark method
require very small time steps to be used in dealing with the time
history response of a structure subjected to a discontinuous load-
ing [25-29], such as a rectangular impulse or sequential triangular
impulses. This is because the dynamic excitation in the time
domain shows discontinuities or rapid changes at the end of the
impulse-type force. Chang [25] pointed out that using the principle
of momentum to transform a second order equation of motion into
a first order momentum equation of motion is beneficial to smooth
out the rapid changes in dynamic loading.

In this paper, a novel force identification method in state space
is proposed based on the Galerkin weak (GW) formulation which
was originally presented to compute the forward problem of struc-
tural dynamics [30]. The conventional second order equation of
motion of structural system is transformed into a set of first order
equations of motion in state space based on the principle of
momentum. A recurrence matrix equation in terms of the state
vector of displacement and velocity over the time step is formu-
lated. The force identification equation is built with the recurrence
matrix and measurement equation as the same as the conventional
state space method for force identification. The proposed method
is very suitable for the cases of large time step and discontinuous
loading.

In addition, a large noise can lead to producing a serious error
of the identified force. The identification method which can deal
with the circumstance of large noise is valuable in practice.
However, very little literature on the aspects of large noise is
found. In order to improve the accuracy of force identification in
the case of large noise, the proposed GW method is refined based
on the discretization idea of the Finite Element Method (FEM).
The time step of measured responses is divided into several
smaller time substeps to form an overdetermined identification
equation. Therefore, more response information in the refined
GW method is utilized to identify the unknown forces compared
with that in the GW method, which is beneficial to improve the
identification accuracy.

This paper proceeds as follows. Section 2 presents the GW
method for force identification and the refined version for the case
of high noise level. In Section 3, numerical studies are conducted to
demonstrate the effectiveness of the proposed method in compar-
ison to the conventional state space method and the Newmark
method. Effects of measurement noise, multiple forces and discon-
tinuity force reconstruction are also considered in detail. Finally,
several conclusions are drawn based on the current study. In
Appendix A, the stability and accuracy of the refined GW method
is illustrated. Appendix B presents the detailed matrices of the
two cases of the refined GW method, including the cases of the
two time subintervals and four time subintervals.

2. The proposed method

The general equation of motion of a damped structure with n
DOFs can be written as

M (t) + CX(t) + Kx(t) = f(t) (1)

where M, C and K are the mass, damping and stiffness matrices of
the structure, respectively; X(t), X(t), X(t) are, respectively, the nodal
acceleration, velocity and displacement vectors of the structure; f(t)
is the force vector. Rayleigh damping C = oM + K is assumed in
this paper, where « and B are the Rayleigh damping coefficients.
However, there is no limitation on the type of damping model
adopted in the proposed method.

2.1. The GW method for force identification

The weighted residual approach was adopted to obtain the gen-
eralized Newmark method with the time FE techniques presented
by Zienkiewiez [31,32]. Selecting different weighted function can
obtain different time integration formulation. Xing et al. [30] pro-
posed a time integration method based on the weak form Galerkin
method. In this paper, the method is transformed to an explicit
form for force identification.

Referring to the discretization of space FE in structural dynam-
ics, the time domain is discretized into N time elements. The time
interval is denoted as t,, < t < t,,1, and the time step is At. The dis-
placement x(t) over the time step At can be approximated as

x(t) =N'd (2)

where N is the interpolation function, d is the vector of nodal dis-
placements of the time element, and the superscript T represents
the transpose operation. The weighted residual method is employed
to convert the original Eq. (1) into an integral form with the time
interval of t, < t < t,,1. By multiplying Eq. (1) by a weight function
w;(t), and integrating the equation over the time step from ¢, to t,,1,
one can obtain the following integral equation as

/ " WMR(E) + CX(0) + KX(E) — f(0)dE =0, i=12,..  (3)

Here, the weight functions are valued as the same as the interpola-
tion functions, which is called the Galerkin method. Eq. (3) can be
rewritten as

bnst

Nf(t)dt =0
(4)

The first term of Eq. (4) can be computed by the subsection inte-
gration as follows
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where v(t) is the vector of velocity. Substituting Egs. (2) and (5) into

Eq. (4), and transforming integration interval from [t,,t,;] into
[—1,1], one can obtain as
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where K =L‘®K+ ZL°®C-5L"®@M,® represents the
Kronecker product; and L= [' NN'd¢ ; L°= /' NNTd;

L" = [ NNd¢; £ = [ Nof(&)de; and ¢ =2C0tn ] <<,
where ¢ represents the natural coordinate, which is a nondimen-
sional time parameter.

The external force function can be also approximated by the
interpolation function, then f° = (L* @ I)p, where p is the vector
of nodal force of the time element. Two time nodes are assumed
in each time element and linear interpolation is employed. The lin-
ear interpolation functions are denoted as
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Substituting Eq. (7) into Eq. (6), one can obtain
o[ dn 2 0 2 ( Mv, .
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Expanding Eq. (8), the two following equations can be obtained as
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