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This paper presents a study on topology optimization of continuum structures under buckling
constraints. New algorithms are developed for minimization of structural compliance considering
constraints on volume and buckling load factors. The SIMP (Solid Isotropic Material with Penalization)
material model is employed and nodal relative densities are used as topology design variables. A new
approach based on the eigenvalue shift and pseudo mode identification is proposed for eliminating the
effect of pseudo buckling modes. Two-phase optimization algorithms are also proposed for achieving bet-
ter optimized designs. Numerical examples are presented to illustrate the effectiveness of the new
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1. Introduction

Structural strength, stiffness, and stability are three of the
important factors considered for assessing the design of a struc-
ture. Naturally, it is important to consider structural stability in
the optimization process. Recently, buckling optimization has
drawn more research attention.

For trusses, frames, and other built-up structures consisting of
bars and beams, much work has been done to consider the stability
requirements in structural optimization, such as size optimization
of trusses and frames [1], shape optimization of columns, truss or
built-up structures [2-4] and topology optimization of truss struc-
tures [5-7].

Neves et al. [8] and Min and Kikuchi [9] have considered struc-
tural stability in topology optimization of continuum structures.
They investigated the reinforcement of a structure to increase its
overall stability. Neves et al.[10] extended their earlier work to
the buckling optimization of periodic material micro-structures.
Geometrically nonlinear models have also been introduced into
the optimization of continuum structures against buckling
[11-15]. In addition, optimization of composite structures was
considered by Lindgaard and Lund [16,17].

A common problem in topology optimization using the SIMP
material model is the appearance of pseudo buckling modes in
low-density regions. Neves et al. [8] suggested ignoring the
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geometrical stiffness matrices of elements with densities and prin-
cipal stresses smaller than predefined threshold values.
Meanwhile, they indicated that the predefined values might have
a significant influence on optimization results. Bendsge and
Sigmund [18] pointed out that doing this might cause solution
oscillations due to abrupt changes of objective functions and sen-
sitivities. In order to avoid the discontinuity caused by such a
cut-off method, they suggested the use of different penalization
schemes for element stiffness matrix and geometric stiffness
matrix. Currently this method appears to be a standard solution
for this problem and has been used by many researchers, e.g.
Lindgaard and Lund [19]. However, Zhou [20] showed that it might
be difficult to select an appropriate parameter value for the expres-
sion of penalization in calculating accurate buckling load factors.

Pseudo eigenmodes may also appear in the optimization of
eigenfrequencies in vibration problems [21]. To eliminate these
pseudo modes, some methods of modifying element stiffness
matrix and/or mass matrix in low-density regions have been pro-
posed and details of these methods can be found in the research lit-
erature, e.g. [21-23]. A topology optimization problem considering
buckling differs from the one considering vibration modes and is
more complex as element geometrical stiffness matrices are
dependent on element stresses, which depend both on the struc-
ture itself and on the loading condition. In contrast, element mass
matrices used in frequency analysis are dependent on material dis-
tribution only.

In this paper, the pseudo buckling mode problem is investigated
and a new method combining eigenvalue shift and pseudo mode
identification is proposed. An optimization formulation for
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minimizing the structural compliance under material volume and
buckling load factor constraints is used in the study.

This paper is organized as follows: In Section 2 the optimization
formulation and material model used are presented. In Section 3,
the finite element model employed for the structural analysis is
introduced. In Section 4, expressions for the sensitivity of con-
straint functions and objective function are derived. In Section 5,
some of the existing methods for dealing with pseudo buckling
modes are briefly discussed and a new approach is proposed. In
Section 6, new optimization algorithms are developed. In
Section 7, two numerical examples are presented to demonstrate
effectiveness of the proposed methods. Finally, concluding remarks
are made.

2. Problem formulation and material interpolation scheme
2.1. Optimization problem formulation

The topology optimization of continuum structure may often
generate designs with slender components when the allowed
material volume fraction is small. If compressive stresses occur
in these structural components, structural buckling may present
serious safety concerns. Therefore, structural stability require-
ments should be considered in the optimization. The mathematical
formulation of the compliance minimization problem of contin-
uum structures with constraints on the material volume and buck-
ling load factors can be stated as

find p={py,py,-.pn}

min C=FU=UKU

st. KU=F
min[7;| > 4> 0 W
Jjel

Vip) < Vo

O<p<p <l i=1,2,...,N

where p; (i=1,2,...,N) are design variables of relative material
density; N is the number of design variables; C is the structural
compliance; U and F are the global displacement and force vectors;
/i is the jth buckling load factor corresponding to the given load
cases; J is a set of indices of the buckling mode considered in the
optimization; A denotes the lower bound of buckling load factors;
V(p) is the total material volume of the structure; V, is the upper
bound of material volume; and p is the lower bound of design vari-
ables, e.g. p = 0.001.

Through the introduction of an explicit constraint condition on
buckling load factors, designs that fail to satisfy stability require-
ments will be excluded from the feasible solution set.
Theoretically, different levels of safety margins can be achieved
by using different lower bound values. For example, if 1 =1, the
optimized structure will be at a critical state under normal service
conditions; if A > 1, the structure will be stable under normal ser-
vice conditions with a bigger safety margin for a bigger /; if
0 < 4 < 1, the structure may buckle under normal service condi-
tions, but cannot be a mechanism.

The buckling mode index set J is introduced for two reasons.
Firstly, when an applied load always points in the same direction,
negative loading factors are meaningless and in this case, set J
should contain only the modes with positive load factors.
Secondly, when pseudo modes are among the calculated buckling
modes, the corresponding mode indices must be excluded from
set J as these modes are not real and should be ignored.

2.2. Material interpolation

It is possible to obtain continuous material distributions by
using nodal relative densities as topology design variables [24]. It
is noted that Kang and Wang [25] have presented a more general
density interpolation strategy for topology optimization using
nodal design variables and Shepard interpolation. In this study, a
more conventional interpolation scheme based on element nodal
values and shape functions is used. Within the eth element, the rel-
ative density distribution is expressed as

NN
PAXY) =D Ne(x,y)pf )
k=1
where p§ denotes nodal density value at the kth node of the ele-
ment, NN is the number of nodes in the element, and Ny(x,y) is
the element shape function for the kth node.
Using the SIMP material model, the elasticity matrix at point
(x,y) is expressed in terms of material relative density p¢(x,y)

E(x.y) = [p°(x,y)’Eo 3)

where Ej is the elasticity matrix of the isotropic solid elastic mate-
rial, and p > 1 is a penalization exponent number.

3. Finite element analysis methods

In this section, the finite element model for structural analyses
and the computation of buckling load factors using hybrid stress
element is briefly introduced.

3.1. Finite element model

When the nodal design variable is employed, the checkerboard
patterns can be avoided naturally. However, a “layering” or “is-
landing” phenomenon of black and white regions in the design
domain may appear [24]. Deng et al. [26] showed that this problem
could be effectively avoided by replacing the conventional
four-node displacement-based quadrilateral element with a hybrid
stress element. The same approach is taken in this study, and in
this section, the basic theory and formulation of the hybrid stress
element to be used will be summarized.

Pian and Sumihara [27] developed a four-node hybrid stress
finite element for homogeneous plane problems. Independent ele-
ment stress and displacement fields are defined and can be
expressed as

o= {Jx,ay,rxy}T:d)ﬁ (4)

u={u,u}" =Nd (5)

where oy, g, and 1y, are stress components, u, and u, are displace-
ment components, ® and N are interpolation matrices for element
stress and displacement fields, respectively, g is an element stress
parameter vector, and d is the nodal displacement vector.

Based on the Hellinger-Reissner variational principle, the fol-
lowing expressions for element stiffness matrix K. and the stress
parameter vector g can be derived

K. = G'H,'G, (6)
B=H,'Gd (7)
where matrices G, and H, are defined as
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