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a b s t r a c t

This paper presents topology optimization of structures with inclusion of microstructural effects. To this
end, Mindlin’s elasticity with microstructure theory is used for investigating the scale effects. For imple-
mentation of finite element based topology optimization, a separate interpolation scheme for the dis-
placement and micro-deformation field is adopted based on 8-node quadrilateral element. Numerical
results show that although the continuum is associated with material length-scales, the minimal topolog-
ical length-scale cannot be controlled without using a regularization technique. Results demonstrate that
the length-scale of the microstructure may have a significant influence on the optimal topologies.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Topology optimization is a process of finding the best layout of
a given amount of material within a design domain for achieving
desirable performance. Unlike the traditional size and shape opti-
mization which usually takes member cross-sectional areas, thick-
nesses or geometric features as design variables for a predefined
structural configuration, topology optimization is more flexible
and allows designers to create more efficient and novel structural
designs [1,2]. From the mechanics point of view, most of the stud-
ies for structural topology optimization in the past have been car-
ried out with classical elastic theories which are applicable at
macroscale where the microscale effects are negligible and can
be ignored. It is well understood that every material relevant to
engineering has its own microstructure, e.g. polymers are com-
posed of molecular chains, polycrystalline materials consist of
crystallites and granular materials have a grain structure.
Generally if a structure under consideration has much larger phys-
ical dimensions than its characteristic microstructural dimensions,
the classical elastic continuum mechanics theory suffices, wherein
only the macrostructure behavior is considered and microstructure
effects are ignored [3]. However, if dimensions of a structure are
comparable to its corresponding material microstructure dimen-
sion, e.g. micro-devices in microelectromechanical systems
(MEMS), the microstructural behavior may influence the final

design. Experiments have reported that microstructural effects
become increasing dominant if size of the structure is comparable
to the characteristic microstructural dimensions, which is also
known as the length-scale effect [4,5]. Since the classical contin-
uum mechanics theories lack microstructural length-scale infor-
mation, they are unable to reproduce the observed behavior from
the experiments, and therefore, not able to capture the correct
response in cases where length-scale effects are prominent. In such
cases, the final topology designs using linear elastic theories can be
inaccurate and even completely incorrect.

In order to model the microstructure length-scale effects,
Cosserat brothers [6] first proposed the linear elastic constitutive
model based on a continuum with microstructure in the early
20th century. In this theory every material particle is considered
as a perfectly rigid volume and there are 3 displacement and 3
micro-rotation components during the deformation so that there
are 6 degrees of freedom in total for each material particle. Based
on Cosserat’s theory, Toupin [7] proposed the linear couple-stress
theory by eliminating the symmetric part of the strain gradient,
and the high-order gradient terms were introduced. In 1960s,
Mindlin [8] formulated a very general theory of elasticity with
microstructure based on Cosserat and Toupin’s work. In Mindlin’s
theory, there are 3 macroscale and 9 microscale deformations for
each material particle. In this theory, kinematics and kinetics of
the system are considered at both macroscale and microscale. In
spite of its generality to describe the length-scale effects,
Mindlin’s theory is complex with too many material parameters.
However, Mindlin’s theory can also be simplified by making
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additional assumptions to construct gradient elasticity theories
that require only one length-scale parameter, see for instance
Ref. [3,8–11].

In contrast to the abundant research on topology designs based
on linear elastic continua, little attention has been paid to topology
design of structures wherein microstructure effects are critical. In
this study, topology optimization is investigated for structures
wherein the microstructural effects are significant. To this end,
Mindlin’s elasticity with microstructures theory [8] is used to
incorporate material length-scale effects. Distinct finite element
interpolations for macro and micro displacement fields are used
in this study based on the interpolation scheme recently proposed
by Zervos [9]. The microstructural length-scale effects on the opti-
mal topology designs is studied through parametric studies
wherein material parameters are systematically categorized at dif-
ferent length-scales. Finally, the influence of different length-scale
parameters on the final optimal topologies and objective values are
systematically presented and discussed.

The outline of this paper is as follows: Section 2 gives a brief
review of Mindlin’s [8] theory of elasticity with microstructures
and Section 3 presents the finite element discretization scheme
for implementing this theory. In Section 4 the convergence study
of the element used in topology optimization is carried out and
Section 5 presents the implementation of topology optimization
problems. The numerical results are presented in Section 6, and
finally the important conclusions and remarks are given in Section 7.

2. Elasticity with microstructure

In this section the basic theoretical framework for linear elastic-
ity with microstructure is briefly presented; further details can be
found in the original paper by Mindlin [8]. Tensor index notation is
used throughout together with the usual summation convention.
The kinematics and the kinetics are considered at both macro
and micro levels.

2.1. Kinematics

Consider a material volume V which is bounded by surface S. In
a Cartesian coordinate system with fixed origin, the position vector
of each material particle is defined by vector xi and the correspond-
ing macro displacement field is expressed by ujðxiÞ (i ¼ 1, 2, 3).
Then the macro-deformation gradient nij is defined as follows:

nij ¼
@uj

@xi
� uj;i ð1Þ

The usual strain field eij, termed as macroscopic strain, is defined as
the symmetric part of macro-deformation gradient as follows:

eij ¼
1
2

uj;i þ ui;j
� �

ð2Þ

In elasticity with microstructure theory, a micro-volume V 0 is
embedded at each material particle. The position of particles within
this micro-volume is defined with respect to a new axes system that
is parallel to the macroscopic coordinates xi with origin moving
with the material particle. In this micro-volume, the position of a
particle is described by a vector x0i and the corresponding
micro-displacement field is defined by u0jðxr; x0kÞ. For describing the
micro-displacement field, in the simplest case, the following linear
relationship between the position vector and the micro displace-
ment field is assumed:

u0j xr; x0k
� �

¼def x0kwkj xrð Þ ð3Þ

where wij xrð Þ is the displacement gradient of the micro-medium
defined as:

wij xrð Þ ¼
@u0j
@x0i

ð4Þ

The symmetric part of wij is defined as the micro-strain tensor:

e0ij ¼
def 1

2
ðwij þ wjiÞ ð5Þ

Finally, the relative deformation gradient cij and micro-deformation
gradient jijk are defined as follows:

cij ¼ nij � wij ð6Þ

jijk ¼
@wjk

@xi
� @iwjk ð7Þ

The concept of relative deformation, which is the bridge between
micro and macro scale deformation, is illustrated in Fig. 1.
Consider a 2-D rectangular macro element (Dx1 � Dx2Þ which is
composed of microstructures ðDx01 � Dx02Þ as shown in Fig. 1(a)
and (b); note that both macrostructure and microstructure have
their own coordinate systems, i.e. xi and x0i respectively. Now when
the macro element domain is under relative axial stress s22, the rel-
ative deformation gradient is c22 ¼ u2;2 � w22 (Fig. 1(a)). Similarly,
when the macro element is under relative shear stress s12, there
will be a relative deformation gradient c12 ¼ u1;2 � w12 between
macro-deformation gradient u2;1 and micro-deformation gradient
w12 (Fig. 1(b)).

2.2. Kinetics and potential energy

Potential energy density (WÞ per unit macro volume is assumed
to be a homogeneous and quadratic function of forty-two variables

eij; cij and jijk, i.e. W ¼W eij; cij;jijk

� �
. By taking derivatives of the

potential energy density, the three stress-like constitutive quanti-
ties are obtained as follows [8]:

rij ¼
@W
@eij

sij ¼
@W
@cij

lijk ¼
@W
@jijk

ð8Þ

where rij can be interpreted as the usual Cauchy stress tensor that
is conjugate to macro-strain eij; sij is the relative stress tensor that is
conjugate to relative-strain cij, and lijk is the double stress tensor
that is conjugate to micro-deformation gradient jijk. Finally, four
types of external forces are considered: body force (biÞ and surface
tractions (~tiÞ that are work conjugate to the displacement field, and
body double force (/ijÞ and surface double force (~TijÞ that are work
conjugate to the micro-deformation gradient. By ignoring the iner-
tia forces and considering the first variation of the total potential
energy to be zero for arbitrary variations in the displacement and
the micro-deformation gradient fields, the following equations of
motion in V are obtained [8]:

@i rij þ sij
� �

þ bj ¼ 0

@ilijk þ sjk þ /jk ¼ 0
ð9Þ

together with the corresponding boundary conditions on S:

ni rij þ sij
� �

¼ ~tj

nilijk ¼ ~Tjk

ð10Þ
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