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a b s t r a c t

The estimation of the effective stiffness coefficients of a pair of microscopically damaged interfaces in a
trimaterial under antiplane deformations is considered here. The trimaterial is made of a thin elastic layer
sandwiched between two elastic half-spaces. The parallel planar interfaces are modeled as containing
periodic arrays of randomly generated micro-cracks. The micromechanical-statistical model of the inter-
faces is formulated and numerically solved in terms of hypersingular boundary integral equations in
which the displacement jumps across the micro-cracks are unknown functions. The numerical results
obtained from the model demonstrate that the effective stiffness coefficients are influenced by the elastic
moduli of the trimaterial, the thickness of the elastic layer and the densities of the micro-cracks.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Multilayered structures play an increasingly important role in
many engineering applications. Bonded layers of materials may
be created by chemical or physical deposition processes [13].
During such processes, residual stresses may be induced by mis-
matches in the elastic or thermal properties of the different mate-
rials, giving rise to the formation of micro-cracks on the interface
between two dissimilar materials [18]. Microscopic gaps may also
exist on the interface because of the micro-roughness of surfaces.
Thus, in general, the different layers in a multilayered structure
are imperfectly bonded.

At the macro-level, an interface weakened by micro-defects
may be modeled as a spring-like imperfect interface characterized
by a stiffness tensor. In the macroscopic model, the displacement
field is discontinuous across the spring-like interface and the trac-
tions on the interface are linearly related to the displacement
jumps over the interface [4,11].

Many researchers have studied boundary value problems involv-
ing the macro spring-like interface (see, for example, [2,9,10]). There
are, however, relatively few studies on the micromechanical estima-
tion of the effective stiffness of the imperfect interface. Fan and Sze

[8] presented a finite element based three-phase model for estimat-
ing the electric conduction coefficient of a micro-cracked interface
between two dielectric half-spaces. The three-phase model takes
into consideration only the density of the interfacial micro-cracks.
To model the interface more realistically, Wang et al. [16] proposed
a micromechanical-statistical approach in which the sizes and posi-
tions of the micro-cracks are randomly generated.

In [16], a selected number of micro-cracks of varying sizes are
randomly generated and positioned to form a finite interval of
the microscopically damaged interface between two elastic
half-spaces. The interval containing the micro-cracks is periodi-
cally reproduced on the remaining parts of the interface. The
micromechanical-statistical model in [16] is formulated and solved
in terms of hypersingular integral equations. In such a hypersingu-
lar integral formulation, the unknown functions are the displace-
ment jumps over micro-cracks on the interface [3]. Thus, no post
processing is needed to compute the interface displacement jumps
which are required in estimating the effective stiffness of the inter-
face. In [16], the micro-crack length is assumed to follow a normal
distribution. For a more realistic distribution of the micro-crack
sizes, Wang et al. [17] employed a chi-square (v2) distribution of
a low degree of freedom to generate the micro-crack length.

The estimation of the effective stiffness coefficients of a pair of
microscopically damaged interfaces in a trimaterial under anti-
plane deformations is considered in the current paper. The trima-
terial is made of a thin elastic layer sandwiched between two
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elastic half-spaces. The micromechanical-statistical approach in
[16,17] is used to model the two parallel planar interfaces. The
resulting boundary value problem is formulated in terms of hyper-
singular boundary integral equations. Once the hypersingular
boundary equations are solved, the effective stiffness coefficients
of the interfaces may be readily computed. The effects of the elastic
moduli of the trimaterial, the thickness of the elastic layer and the
densities of the micro-cracks on the effective stiffness coefficients
of the two interfaces are investigated.

2. A micromechanical problem of a pair of micro-cracked
interfaces

With reference to a Cartesian coordinate system Ox1x2x3, a thin
elastic layer occupies the region 0 < x2 < h and is sandwiched
between two elastic half-spaces in the regions x2 < 0 and x2 > h.
The interfaces x2 ¼ 0 and x2 ¼ h between the layer and the
half-spaces are microscopically damaged, containing interfacial
micro-cracks. The micro-cracks have geometries independent of
the x3 coordinate. For convenience, the micro-cracked interfaces
x2 ¼ 0 and x2 ¼ h are denoted by I and II respectively.

The materials in the layer and half-spaces are anisotropic, hav-
ing possibly dissimilar elastic properties. The trimaterial is
assumed to undergo an antiplane elastostatic deformation along
the x3 direction. The x1 and x2 components of the elastic displace-
ment are zero and the x3 component, denoted by u3, is a function of
x1 and x2 only. According to Hooke’s Law, the antiplane stresses r3j

(j ¼ 1;2) are related to the spatial derivatives of u3 by

r3j ¼ kijðx2Þ
@u3

@xi
; ð1Þ

where kijðx2Þ are elastic moduli of the anisotropic materials given by

kijðx2Þ ¼

kð1Þij for x2 > h;

kð2Þij for 0 < x2 < h;

kð3Þij for x2 < 0;

8>><>>: ð2Þ

with kðpÞij being constants such that kðpÞij ¼ kðpÞji and kðpÞ11 kðpÞ22 � ðk
ðpÞ
12 Þ

2
> 0.

The usual Einsteinian convention of summing over a repeated index
is assumed here for only Latin subscripts from 1 to 2.

From (1) and the equilibrium equations of elastostatics, the
antiplane displacement u3 satisfies the elliptic partial differential
equation

@

@xj
ðkijðx2Þ

@u3

@xi
Þ ¼ 0: ð3Þ

If the displacement u3 and stress r3j along a macroscopic por-
tion of the microscopically damaged interface I or interface II is
homogenized using

bu3ðbx1;0
�Þ ¼ 1

2‘

Z bx1þ‘bx1�‘
u3ðx1;0

�Þdx1;

bu3ðbx1; h
�Þ ¼ 1

2‘

Z bx1þ‘bx1�‘
u3ðx1;h

�Þdx1;

br3jðbx1;0
�Þ ¼ 1

2‘

Z bx1þ‘bx1�‘
r3jðx1; 0

�Þdx1;

br3jðbx1; h
�Þ ¼ 1

2‘

Z bx1þ‘bx1�‘
r3jðx1; h

�Þdx1; ð4Þ

where bx1 and ‘ denote the midpoint and length of the macroscopic
portion respectively, then the boundary conditions for the

macro-level spring-like model for the interfaces are given by (see
[16,10])

bkIDbu3Iðbx1Þ ¼br32ðbx1;0
þÞ ¼ br32ðbx1;0

�Þ;bkIIDbu3IIðbx1Þ ¼br32ðbx1; h
þÞ ¼ br32ðbx1;h

�Þ; ð5Þ

where Dbu3Iðbx1Þ ¼ bu3ðx1;0
þÞ � bu3ðx1;0

�Þ and Dbu3IIðbx1Þ ¼ bu3ðx1;h
þÞ�bu3ðx1;h

�Þ are the displacement jumps across interfaces I and II

respectively and bkI and bkII denote the effective stiffness of interfaces
I and II respectively. The two interfaces are assumed to be homoge-

neous at the macro level, hence the effective stiffness coefficients bkI

and bkII are constant.
Note that the antiplane stress br32 in (5) is the antiplane traction

on the micro-cracks. This is because the micro-cracks lie on the
horizontal planes x2 ¼ 0 and x2 ¼ h.

At the microscopic level, the two interfaces are modeled as con-
taining periodical arrays of interfacial micro-cracks. For a simpli-
fied model, each of the interfaces contains M arbitrarily
positioned micro-cracks of possibly different lengths lying on a
period interval of the interface of length L. On the part of interface
I where 0 < x1 < L, the tips of a typical m-th micro-crack are given

by ðaðmÞI ;0Þ and ðbðmÞI ; 0Þ, where aðmÞI and bðmÞI are constants such that

0 < að1ÞI < bð1ÞI < að2ÞI < bð2ÞI < � � � < aðMÞI < bðMÞI < L. On the remaining
parts of interface I, the interfacial micro-cracks lie at where

aðmÞI þ nL < x1 < bðmÞI þ nL, for m ¼ 1;2; . . . ;M and n ¼ �1;�2; . . . .
The part of interface II where L0 < x1 < L0 þ L contains M

micro-cracks with tips ðaðmÞII ;0Þ and ðbðmÞII ;0Þ (for m ¼ 1;2; . . . ;M),

where L0 is a given positive number such that 0 6 L0 < L and aðmÞII

and bðmÞII are such that L0 < að1ÞII < bð1ÞII < að2ÞII < bð2ÞII < � � � <
aðMÞII < bðMÞII < L0 þ L. The micro-cracks on interface II outside where

L0 < x1 < L0 þ L lie in the regions aðmÞII þ nL < x1 < bðmÞII þ nL; x2 ¼ 0,
for m ¼ 1;2; . . . ;M and n ¼ �1;�2; . . . . Fig. 1 gives a sketch of the
geometry of the problem for M ¼ 3. The uncracked parts of the
interfaces are perfectly bonded.

The damage ratios of interfaces I and II are respectively defined by

qI ¼
1
L

XM

m¼1

ðbðmÞI � aðmÞI Þ and qII ¼
1
L

XM

m¼1

ðbðmÞII � aðmÞII Þ: ð6Þ

From (6), because of the assumption that the two interfaces have
the same number of micro-cracks, the damage ratios can be shown
to be related to the average half lengths of the micro-cracks on the

Fig. 1. A sketch of the geometry of the problem for M ¼ 3.
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