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a b s t r a c t

This paper proposes a novel approach for dealing with the ‘curse of dimensionality’ in the case of infinite-
dimensional vector autoregressive (IVAR) models. It is assumed that each unit or variable in the IVAR is
related to a small number of neighbors and a large number of non-neighbors. The neighborhood effects
are fixed and do not change with the number of units (N), but the coefficients of non-neighboring units
are restricted to vanish in the limit as N tends to infinity. Problems of estimation and inference in a
stationary IVAR model with an unknown number of unobserved common factors are investigated. A
cross-section augmented least-squares (CALS) estimator is proposed and its asymptotic distribution is
derived. Satisfactory small-sample properties are documented byMonte Carlo experiments. An empirical
illustration shows the statistical significance of dynamic spillover effects in modeling of US real house
prices across the neighboring states.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Vector autoregressive (VAR) models provide a flexible frame-
work for the analysis of complex dynamics and interactions that
exist across economic variables or units. Traditional VARs assume
that the number of such variables, N , is fixed and the time dimen-
sion, T , tends to infinity. But since the number of parameters to be
estimated grows at a quadratic rate with N , in practice the empir-
ical applications of VARs often involve only a handful of variables.
The objective of this paper is to consider VARs where both N and T
are large. In this case, parameters of the VAR model can no longer
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be consistently estimated unless suitable restrictions are imposed
to overcome the dimensionality problem.

Two different approaches have been suggested in the literature
to deal with this ‘curse of dimensionality’: (i) shrinkage of the
parameter space, and (ii) shrinkage of the data. Spatial and/or
spatiotemporal literature shrinks the parameter space by using a
priori given spatial weight matrices that restrict the nature of the
links across the units. Alternatively, prior probability distributions
are imposed on the parameters of the VAR such as the ‘Minnesota’
priors proposed byDoan et al. (1984). This class ofmodels is known
as Bayesian VARs (BVARs).1

The second approach is to shrink the data, along the lines
of index models. Geweke (1977) and Sargent and Sims (1977)
introduced dynamic factor models, which have more recently
been generalized to allow for weak cross-section dependence by
Forni and Lippi (2001) and Forni et al. (2000, 2004). Empirical
evidence suggests that few dynamic factors are needed to explain

1 Other types of prior have also been considered in the literature. See, for
example, Del Negro and Schorfheide (2004) for a recent reference. In most
applications, BVARs have been applied to relatively small systems (e.g. Leeper et al.
(1996) considered 13- and 18-variable BVARs; a few exceptions include Giacomini
and White (2006) and De Mol et al. (2008)), with the focus being mainly on
forecasting. Bayesian VARs are known to produce better forecasts than unrestricted
VARs or structural models. See Litterman (1986) and Canova (1995) for further
references.
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the co-movements of macroeconomic variables.2 This has led to
the development of factor-augmented VAR (FAVAR) models by
Bernanke et al. (2005) and Stock andWatson (2005), among others.

Applied researchers are often forced to impose arbitrary
restrictions on the coefficients that link the variables of a given
cross-sectionunit to the current and lagged values of the remaining
units, mostly because they realize that without such restrictions
the model is not estimable. This paper proposes a novel way to
deal with the curse of dimensionality by shrinking part of the
parameter space in the limit as the number of variables (N) tends
to infinity. An important example would be a VAR model in which
each unit is related to a small number of neighbors and a large
number of non-neighbors. The neighbors could be individual units
or, more generally, linear combinations of units (spatial averages).
The neighborhood effects are fixed and do not change with N ,
but the coefficients corresponding to the remaining non-neighbor
units are small, of order O(N−1). Such neighborhood and non-
neighborhood effects could be motivated by theoretical economic
considerations, or could arise due to themis-specification of spatial
weights.

Although under this set-up each of the non-neighboring
coefficients is small, the sum of their absolute values in general
does not tend to zero and the aggregate spatiotemporal non-
neighborhood effects could be large. This paper shows that,
under weak cross-section dependence, the spillover effects from
non-neighboring units are neither particularly important, nor
estimable.3 But the coefficients associated with the neighboring
units can be consistently estimated by simply ignoring the non-
neighborhood effects that are of second-order importance in N .
On the other hand, if the units are cross-sectionally strongly
dependent, then the spillover effects from non-neighbors are
in general important, and ignoring such effects can lead to
inconsistent estimates.

Another model of interest arises when, in addition to the
neighborhood effects, there is also a fixed number of dominant
units that have non-negligible effects on all other units. In this
case the limiting outcome is shown to be a dynamic factor
model.4 Accordingly, this paper provides a link between data
and parameter shrinkage approaches to mitigating the curse of
dimensionality. By imposing limiting restrictions on some of the
parameters of the VARwe effectively end upwith a data shrinkage.
To distinguish high-dimensional VAR models from the standard
specifications, we refer to the former as the infinite-dimensional
VARs or IVARs for short.

The paper also establishes the conditions under which the
global VAR (GVAR) approach proposed by Pesaran et al. (2004) is
applicable.5 In particular, the IVAR featuring all macroeconomic
variables could be arbitrarily well approximated by a set of finite-
dimensional small-scalemodels that can be consistently estimated
separately in the spirit of the GVAR.

A second contribution of this paper is the development of
appropriate econometric techniques for estimation and inference

2 Stock and Watson (1999, 2002), Giannone et al. (2005) conclude that only a
few, perhaps two, factors explain much of the predictable variations, while Bai and
Ng (2007) estimate four factors and Stock and Watson (2005) estimate as many as
seven factors.
3 Concepts of strong and weak cross-section dependence, introduced in Chudik

et al. (2010), will be applied to VAR models.
4 The case of IVARmodels with a dominant unit is studied in Pesaran and Chudik

(2010).
5 The GVAR model has been used to analyse credit risk in Pesaran et al. (2006,

2007). An extended and updated version of the GVAR by Dées et al. (2007), which
treats the Euro area as a single economic area, was used by Pesaran et al. (2007) to
evaluate UK entry into the Euro. Global dominance of the US economy in a GVAR
model is considered in Chudik (2008). Further developments of a global modeling
approach are provided in Pesaran and Smith (2006). Garratt et al. (2006) provide a
textbook treatment of GVAR.

in stationary IVARmodelswith anunknownnumber of unobserved
common factors. This extends the analysis of Pesaran (2006) to
dynamicmodelswhere all variables are determined endogenously.
A simple cross-section augmented least-squares estimator (or
CALS for short) is proposed and its asymptotic distribution
derived. Small-sample properties of the proposed estimator are
investigated through Monte Carlo experiments. As an illustration
of the proposed approach we consider an extension of the
empirical analysis of real house prices across the 49 US states
conducted recently by Holly et al. (2010), and show statistically
significant dynamic spillover effects of real house prices across the
neighboring states.

The remainder of the paper is organized as follows. Section 2
introduces the IVAR model. Section 3 investigates cross-section
dependence in IVAR models. Section 4 focusses on the estimation
of a stationary IVAR model. Section 5 discusses the results of
the Monte Carlo (MC) experiments, and Section 6 presents the
empirical results. The final section offers some concluding remarks.
Proofs are provided in the Appendix.

We give a brief word on notation. |λ1(A)| ≥ |λ2(A)| ≥ · · · ≥

|λn(A)| are the eigenvalues of A ∈ Mn×n, where Mn×n is the
space of real-valued n × n matrices. ‖A‖1 ≡ max1≤j≤n

∑n
i=1 |aij|

denotes the maximum absolute column sum matrix norm of A,
and ‖A‖∞ ≡ max1≤i≤n

∑n
j=1 |aij| is the absolute row sum matrix

norm of A. ‖A‖ =

ϱ(A′A) is the spectral norm of A, and

ϱ(A) ≡ max1≤i≤n{|λi(A)|} is the spectral radius of A.6 All vectors
are column vectors, and the ith row of A is denoted by a′

i . an =

O(bn) denotes that the deterministic sequence {an} is at most of
order bn. xn = Op(yn) states that the random variable xn is at
most of order yn in probability. N is the set of natural numbers,
and Z is the set of integers. We use K and ϵ to denote positive
fixed constants that do not vary with N or T . Convergence in
distribution and convergence in probability is denoted by

d
→ and

p
→, respectively. Symbol

q.m.
→ represents convergence in quadratic

mean. (N, T )
j

→ ∞ denotes joint asymptotic in N and T , with N
and T → ∞, in no particular order.

2. Infinite-dimensional vector autoregressive models

Suppose we have T time series observations on N cross-section
units indexed by i ∈ S(N) ≡ {1, . . . ,N} ⊆ N. Individual units could
be households, firms, regions, or countries. Both dimensions,N and
T , are assumed to be large. For each point in time, t , and for each
N ∈ N, the N cross-section observations are collected in the N × 1
vector x(N),t = (x(N),1t , . . . , x(N),Nt)′, and it is assumed that x(N),t
follows the VAR(1) model:

x(N),t = Φ(N)x(N),t−1 + u(N),t , (1)

u(N),t = R(N)ε(N),t . (2)

Φ(N) and R(N) are N × N coefficient matrices that capture the
dynamic and contemporaneous dependences across the N units,
and ε(N),t = (ε1t , ε2t , . . . , εNt)

′ is an N × 1 vector of white noise
errors with mean 0 and covariance matrix IN .

VARmodels have been extensively studiedwhenN is small and
fixed, and T is large and unbounded. This framework, however,
is not appropriate for many empirical applications of interest.
This paper aims to fill this gap by analyzing VAR models where
both N and T are large. The sequence of models (1) and (2) with
dim(x(N),t) = N → ∞ will be referred to as the infinite-
dimensional VAR model, or IVAR for short. The extension of the

6 Note that, if x is a vector, then ‖x‖ =

ϱ(x′x) =

√
x′x corresponds to the

Euclidean length of vector x.



Download	English	Version:

https://daneshyari.com/en/article/5096688

Download	Persian	Version:

https://daneshyari.com/article/5096688

Daneshyari.com

https://daneshyari.com/en/article/5096688
https://daneshyari.com/article/5096688
https://daneshyari.com/

