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a b s t r a c t

This paper presents the development of a new concept, the Embedded Unit Cell (EUC) approach, to cal-
culate local responses in elastic media. The EUC approach is based on a multi-scale formulation of
non-periodic domains to evaluate the local/micro response where stress concentrations are expected.
The formulation is based on alternative boundary conditions which is not restricted to periodic assump-
tions of the unit cell response that is required in the classical theory. This approach provides a reduced
computational cost model of the macroscopic/global problem while preserving the accuracy at the micro-
scale problem. We conclude with a numerical verification study.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Multiscale modeling is one of the most powerful engineering
tools to evaluate the mechanical response of composite-material
structures [1–13]. In this type of analysis the micro-scale proper-
ties of the composite materials are homogenized and micro-scale
post processing is required to obtain the micro-scale response,
e.g., see [14–24]. The generalized theory of homogenization [25–
30], which provides the mathematical formulation of multi scale
analysis [24,31–38], is based on the assumptions of a periodic unit
cell (microscopic) response [39–43]. In this paper, we suggest the
embedded unit cell (EUC) approach which circumvents the restric-
tions imposed by the period response assumption. This enables the
use of multi-scale technics to obtain the local response in stress
concentration engineering problems also refered as local global
problems.

Numerous theories have been developed to predict the behavior
of composite materials with various effective properties methods
e.g. see [44–46]. Most of these analytical models can only give esti-
mates or boundaries for the macroscopic properties for complex
microstructures. In addition, computational procedures for imple-
menting homogenization are active areas of research e.g. see
[30,47]. These developments have established the Finite Element
Method (FEM) [47–55] as one of the most efficient numerical
methods, whereby the macroscopic responses can be obtained by
volumetrically averaging numerical solutions of unit cells e.g. see
[56]. All these contributions assume periodic response of the

micro-scale (unit cell) and therefore cannot be utilized for local
global problems where periodic do not exist.

Multi scale formulation which circumvents the periodic
assumption has been suggested by Fish and Fan [57]. Fish and
Fan [57] suggested a formulation based on an asymptotic expansion
of the displacement field around an arbitrary reference point. They
used this formulation to obtain the microscopic large displacement
response and also discuss its ability to predict the response in local–
global engineering problems having non-periodic response. Other
investigation of the non-periodic problems have been discussed by
Allaire [34] and Cherdantsev [39], which showed that two-scale
finite element multi-scale analysis convergence can be achieved
without periodicity. The proposed research intends to establish
multi-scale technics based on the theory of homogenization for
stress concentration engineering problems.

In this research we are suggesting the EUC multi-scale approach
in order to obtain the local response in stress concentration engi-
neering problems (local global problems). In the suggested formu-
lation we are adjusting the theory of homogenization to be used in
a domain decomposing scheme. By that we are dividing the stress
concentration problem into two independent models which are
coupled using a unit cell having alternative boundary conditions
by mean of an interface zone (surrounding domain) between the
local (microscopic) and the global (macroscopic) models. By that
instead of solving one demanding problem we are solving two
much less demanding problems while preserving the accuracy.
The formulation is based on the asymptotic homogenization theory
without periodic assumption by suggesting alternative boundary
conditions. Finally, we conclude with a numerical implementation
and verification study.
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2. Embedded Unit Cell formulation

To obtain the local response in various engineering problems,
domain decomposition techniques are usually required e.g. see
[58–60]. These approaches refine the mesh in the vicinity of the
local domains and thus result in a model that includes a large num-
ber of degrees of freedoms [61]. In contrast, the suggested EUC for-
mulation uses several sequential models, i.e., one for the
‘‘macroscopic’’ problem which does not include the refinement in
the vicinity of the stress concentration and ‘‘microscopic’’ prob-
lems which describe only the domain at the vicinity of the stress
concentration.

The EUC approach is based on a non-periodic multiscale for-
mulation with alternative boundary conditions. We are suggest-
ing achieving that by surrounding the stress concentration
domain (unit cell) with an appropriate continuum domain. This
surrounding domain appropriately accounts for the boundary
conditions, required to represent the response at the vicinity of
the stress concentration domain using a unit cell model
(micro-scale model). In the suggested EUC approach, we are using
this unit cell models in a multi-scale scheme to homogenize the
stress concentration domain (unit cell models) and up-scale its
properties to the macro-scale (structural) model. The following
sections describe the mathematical formulation of the suggested
EUC approach.

2.1. The theory of homogenization

Let assume, that macroscopic body Xf is formed by heteroge-
neous microscopic structure with local periodicity set by unit cell
[62–66] see Fig. 1.

We assume that the problem is defined by two scales, global
(coarse) scale, D, order of the macroscopic body Xf and local (fine)
scale, d, order of the microscopic unit cell.

The relation between the global coordinate system xi to the
local coordinate system yi is defined by:

yi ¼ xi=f; i ¼ 1;2;3 . . . ð1Þ

where f is ratio between the scales such that or as:

@xi

@yi
¼ fdij ð2Þ

where dij is the Kronecker Delta.
Response of heterogeneous body subjected to external loading,

is described by physical measures, such as displacement ui, strain
eij and stress rij, that change slowly at the global coordinates and
change rapidly at microscopic coordinate y at the vicinity f of a
given point x.

So ui; eij;rij depend on both coarse and fine scales, as:

uf
i ¼ uf

i x; yð Þ

ef
ij ¼ ef

ij x; yð Þ

rf
ij ¼ rf

ij x; yð Þ

ð3Þ

where i; jð Þ ¼ 1;2 for two-dimensional problem, and i; jð Þ ¼ 1;2;3
for three-dimensional problem. The superscript f denotes periodic-
ity of the physical measures, such that:

uf
i x; yð Þ ¼ uf

i x; yþ kYð Þ

ef
ij x; yð Þ ¼ ef

ij x; yþ kYð Þ

rf
ij x; yð Þ ¼ rf

ij x; yþ kYð Þ

ð4Þ

where k denotes specific unit cell index and Y ykð Þ denote the unit
cell size.

Solutions of the unknown parameters such as displacement ui,
the mechanic strain eij and stress rij are achieved by using the fol-
lowing set of Eqs. (5)–(9) and boundary conditions for displace-
ments and tractions (see also [60]).

@rf
ij

@xj
þ f i ¼ 0 in Xf ð5Þ

Kinematical:

ef
ij ¼

1
2

@uf
i

@xj
þ
@uf

j

@xi

 !
in Xf ð6Þ

Constitutive equation:

rf
ij ¼ Cf

ijkl ef
kl � lkl

� �
þ kij in Xf ð7Þ

Boundary conditions – essential:

uf
i ¼ �ui on Cu ð8Þ

Boundary conditions – natural:

rf
ijnj ¼ �ti on Cr ð9Þ

The material properties tensor Cf
ijkl is symmetric with respect to

indices i; j; k; lð Þ; f i represents body forces, lkl; kij are initial stress
and strain respectively. nj are the outward normal unit vectors to
@X, the boundary of the domain X. @X is composed of the seg-
ments Cu and Cr, on which the displacements and tractions
boundary conditions are defined.

The displacement field uf
i x; yð Þ can be described by the following

asymptotic expansion:

uf
i x; yð Þ ¼ uð0Þi x; yð Þ þ fuð1Þi x; yð Þ þ f2uð2Þi x; yð Þ þ � � � ð10Þ

For any function f x; yð Þ, the derivative can be defined by the chain
rule as:

d
dxj
¼ @

@xj
þ @

@yk

@yk

@xj
ð11Þ

So that derivatives of the displacement field can be described as fol-

lows:
duf

i x; yð Þ
dxj

¼ @uf
i x; yð Þ
@xj

þ @uf
i x; yð Þ
@yk

@yk

@xj
.

Substituting Eq. (2) into Eq. (11), we obtain that:

duf
i x; yð Þ
dxj

¼ @uf
i x; yð Þ
@xj

þ 1
f

@uf
i x; yð Þ
@yj

¼ @uf
i x; yð Þ
@xj

þ f�1 @uf
i x; yð Þ
@yj

ð12Þ
Fig. 1. Heterogeneous microscopic structure with local periodicity unit cells.
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