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a b s t r a c t

We present a new matrix-logarithm model of the realized covariance matrix of stock returns. The
model uses latent factors which are functions of lagged volatility, lagged returns and other forecasting
variables. The model has several advantages: it is parsimonious; it does not require imposing parameter
restrictions; and, it results in a positive-definite estimated covariance matrix. We apply the model to the
covariance matrix of size-sorted stock returns and find that two factors are sufficient to capture most of
the dynamics.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The variances and covariances of stock returns vary over
time (e.g. Andersen et al., 2005). As a result, many important
financial applications require amodel of the conditional covariance
matrix. Three distinct categories ofmethods for estimating a latent
conditional covariance matrix have evolved in the literature. In
the first category are the various forms of the multivariate GARCH
model where forecasts of future volatility depend on past volatility
and shocks (e.g. Bauwens et al., 2006). In the second category,
authors have modeled asset return variances and covariances as
functions of a number of predetermined variables (e.g. Ferson,
1995). The third category includesmultivariate stochastic volatility
models (e.g. Asai et al., 2006).

In this paper, we introduce a new model of the realized
covariance matrix.1 We use high-frequency data to construct
estimates of the daily realized variances and covariances of five
size-sorted stock portfolios. By using high-frequency data we
obtain an estimate of the matrix of ‘quadratic variations and
covariations’ that differs from the true conditional covariance
matrix by mean zero errors (e.g. Andersen et al. (2003) and
Barndorff-Nielsen and Shephard (2004a)). This provides greater
power in determining the effects of alternative forecasting

∗ Corresponding author.
E-mail addresses: gbauer@bankofcanada.ca (G.H. Bauer),

keith_vorkink@byu.edu (K. Vorkink).
1 Andersen et al. (2001) and Barndorff-Nielsen and Shephard (2002) formalized

the notion of realized volatility.

variables on equity market volatility when compared to efforts
based on latent volatility models.

We transform the realized covariance matrix using the matrix
logarithm function to yield a series of transformed volatilities
which we term the log-space volatilities. The matrix logarithm
is a non-linear function of all of the elements of the covariance
matrix and thus the log-space volatilities do not correspond one-
to-one with their counterparts in the realized covariance matrix.2
However, modeling the time variation of the log-space volatilities
is straightforward and avoids the problems that plague existing
estimators of the latent volatility matrix. In particular, we do not
have to impose any constraints on our estimates of the log-space
volatilities.

We then model the dynamics of the log-space volatility matrix
using a latent factor model. The factors consist of both past
volatilities and other variables that can help forecast future
volatility. We thus are able to model the conditional covariance
matrix by combining a large number of forecasting variables into
a relatively small number of factors. Indeed we show that two
factors can capture the volatility dynamics of the size-sorted stock
portfolios.

The factor model is estimated by GMM yielding a series
of filtered estimates. We then transform these fitted values,
using the matrix exponential function, back into forecasts of
the realized covariance matrix. Our estimated matrix is positive

2 The matrix logarithm has been used for estimators of latent volatility by Chiu
et al. (1996) and Kawakatsu (2006) and was also suggested in Asai et al. (2006).
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definite by construction and does not require any parameter
restrictions to be imposed. The approach can thus be viewed as
a multivariate version of standard stochastic volatility models,
where the variance is an exponential function of the factors and
the associated parameters.

In addition to introducing our new realized covariance matrix
we also test the forecasting ability of alternative variables for
time-varying equity market covariances. Our motivation is that
researchers have examined a number of variables for forecasting
returns but there is much less evidence that the variables forecast
risks. The cross-section of small- and large-firm volatility has
been examined in a number of earlier papers (e.g., Kroner and Ng
(1998), Chan et al. (1999), and Moskowitz (2003)). However, these
papers used models of latent volatility to capture the variation in
the covariances. In contrast, we construct daily measures of the
realized covariance matrix of small and large firms over the 1988
to 2002 period. Our precise measures of volatility allow a more
detailed examination of the drivers of conditional covariances than
prior work.

Naturally all of these advantages come at a cost. The main cost
is that by performing our analysis on the log-space volatilities
and then using the (non-linear) matrix exponential function, the
estimated volatilities are not unbiased. However, as we show
below, a simple bias correction is available that greatly reduces the
problem. Another cost is that direct interpretation of the effects
of an instrument on expected volatility is difficult due to the
non-linear nature of the model. However, using our factor model
estimates, we can obtain the derivatives of the realized covariance
matrix with respect to the forecasting variables. We are able to
calculate the derivatives at each point in our sample, yielding a
series of conditional volatility elasticities that are functions of both
the level of the volatility and the factors driving the volatility. The
time series allows us to determine which variables have a large
impact on time-varying expected volatility.

The paper is organized as follows. In Section 2, we present our
model of matrix logarithmic realized volatility. In Section 3, we
outline ourmethod for constructing the realized volatilitymatrices
and give the sources of the data. In Section 4, we give our results.
In Section 5, we conclude.

2. Model

2.1. The matrix log transformation

In this paper, we use the matrix exponential and matrix loga-
rithm functions to model the time-varying covariance matrix. The
matrix exponential function performs a power series expansion on
a square matrix A

V = expm (A) ≡

∞−
n=0

1
n!

An. (1)

The matrix exponential function has a number of useful properties
(Chiu et al. (1996)). The most important of these is that A is
a real, symmetric matrix, if and only if V is a real, positive
definite matrix. The matrix logarithm function is the inverse of the
matrix exponential function. Taking the matrix logarithm of a real,
positive definite matrix V results in a real, symmetric matrix A:
A = logm (V ).

The matrix logarithm and matrix exponential functions are
used in our three-step procedure to obtain forecasts of the
conditional covariance matrix of stock returns. In the first step,
for each day t , we use high-frequency data to construct the
P × P realized conditional covariance matrix Vt .3 The Vt matrix
is positive semi-definite by construction. Applying the matrix

3 The details of how the matrix is constructed are presented below.

logarithm function,

At = logm (Vt), (2)

yields a real, symmetric P × P matrix At .
In the second step, we model the dynamics of the At matrix. To

do this, we follow Chiu et al. (1996) and apply the vech operator to
the matrix At

at = vech (At),

which stacks the elements on and below the diagonal of At to
obtain the p × 1 vector at , where p =

1
2P(P + 1). The at vector

forms the basis for all subsequent models. Below, we present a
factor model for the at processes which allows both lagged values
of at and other variables to forecast the volatility.

In the third step, we transform the fitted values from the log-
volatility space into fitted values in the actual volatility space. We
use the inverse of the vech function to form a P × P symmetric
matrix At of the fitted values at each time t from the vector at .
Applying the matrix exponential functionVt = expm (At), (3)

yields the positive semi-definite matrix Vt , which is our estimate
of the conditional covariance matrix for day t .

2.2. Factor models of volatility

2.2.1. Forecasting variables
Wewill use several different groups of variables to forecast the

conditional covariance matrix. Based on the existing literature, we
can separate the variables into two groups. The first are matrix-
log values of realized volatility (at , at−1, at−2, . . .) which are used
to capture the autoregressive nature of the volatility. There are
three potential problems in using these variables to forecast
volatility. First, the existing literature shows that capturing
volatility dynamics will likely require a long lag structure. To
overcome this, we adapt the Heterogeneous Autoregressive model
of realized volatility (HAR-RV) of Corsi (2009) and Andersen
et al. (2007) to a multivariate setting. These authors show that
the aggregate market realized volatility is forecast well by a
(linear) combination of lagged daily, weekly and monthly realized
volatility.

The second problem is that other authors have indicated
that lagged realized volatility may not be the best predictor. In
particular, both Andersen et al. (2007) and Ghysels et al. (2006)
find that bi-power covariation – an estimate of the continuous
part of the volatility diffusion – is a good predictor of the
aggregate market’s realized volatility.4 We thus construct bi-
power covariation matrices aggregated over the last d = 1, 5 and
20 days. As in (2) above, we take the matrix logarithm of the bi-
power covariation matrix over the past d days to yield ABP(d)t .
Taking the vech of this matrix yields the unique elements aBP(d)t .

The third problem is the large number of correlated predictors.
It is likely that the bi-power covariation series aBP(d)t is driven by a
smaller number of factors. We test this by estimating the principal
components of aBP(d)t ,

aBP(d, i), i = 1, . . . , pc, (4)

where aBP(d, i) is the ith principal component of the d-day
log-space bi-power covariation matrix. We find that a small
number of components captures the volatility of the daily, weekly

4 Barndorff-Nielsen and Shephard (2004b, 2006) develop the theory of bi-power
variation, and extend their results to the multivariate case (bi-power covariation)
in Barndorff-Nielsen and Shephard (2005). We construct bi-power covariation
measures for our portfolios using Definition 3 of Barndorff-Nielsen and Shephard
(2005).
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