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This paper shows that the asymptotic normal approximation is often insufficiently accurate for volatility
estimators based on high frequency data. To remedy this, we derive Edgeworth expansions for such
estimators. The expansions are developed in the framework of small-noise asymptotics. The results have
application to Cornish-Fisher inversion and help setting intervals more accurately than those relying on
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1. Introduction

Volatility estimation from high frequency data has received
substantial attention in the recent literature.! A phenomenon
which has been gradually recognized, however, is that the standard
estimator, realized volatility or realized variance (RV, hereafter),
can be unreliable if the microstructure noise in the data is not
explicitly taken into account. Market microstructure effects are
surprisingly prevalent in high frequency financial data. As the
sampling frequency increases, the noise becomes progressively
more dominant, and in the limit swamps the signal. Empirically,
sampling a typical stock price every few seconds can lead to
volatility estimates that deviate from the true volatility by a factor
of two or more. As a result, the usual prescription in the literature
is to sample sparsely, with the recommendations ranging from five
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to thirty minutes, even if the data are available at much higher
frequencies.

More recently various RV-type estimators have been proposed
to take into account the market microstructure impact. For exam-
ple, in the parametric setting, Ait-Sahalia et al. (2005) proposed
likelihood corrections for volatility estimation; in the nonparamet-
ric context, Zhang et al. (2005) proposed five different RV-like es-
timation strategies, culminating with a consistent estimator based
on combining two time scales, which we called TSRV (two scales
realized volatility).?

One thing in common among various RV-type estimators is that
the limit theory predicts that the estimation errors of these es-
timators should be asymptotically mixed normal. Without noise,
the asymptotic normality of RV estimation errors dates back to at
least Jacod (1994) and Jacod and Protter (1998). When microstruc-
ture noise is present, the asymptotic normality of the standard RV
estimator (as well as that of the subsequent refinements that are

2 Anatural generalization of TSRV, based on multiple time scales, can improve the
estimator’s efficiency (Zhang, 2006). Also, since the development of the two scales
estimators, two other classes of estimators have been developed for this problem:
realized kernels (Barndorff-Nielsen et al., 2008, 2011), and pre-averaging (Podolskij
and Vetter, 2009; Jacod et al., 2009). Other strategies include Zhou (1996, 1998),
Hansen and Lunde (2006), and Bandi and Russell (2008). Studying the Edgeworth
expansions of these statistics is beyond the scope of this paper, instead we focus on
the statistics introduced by Zhang et al. (2005).
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robust to the presence of microstructure noise, such as TSRV) was
established in Zhang et al. (2005).

However, simulation studies do not agree well with what the
asymptotic theory predicts. As we shall see in Section 5, the error
distributions of various RV-type estimators (including those that
account for microstructure noise) can be far from normal, even for
fairly large sample sizes. In particular, they are skewed and heavy-
tailed. In the case of basic RV, such non-normality appears to first
have been documented in simulation experiments by Barndorff-
Nielsen and Shephard (2005).

We argue that the lack of normality can be caused by the
coexistence of a small effective sample size and small noise. As
a first-order remedy, we derive Edgeworth expansions for the
RV-type estimators when the observations of the price process
are noisy. What makes the situation unusual is that the errors
(noises) € are very small, and if they are taken to be of order O,(1),
their impact on the Edgeworth expansion may be exaggerated.
Consequently, the coefficients in the expansion may not accurately
reflect which terms are important. To deal with this, we develop
expansions under the hypothesis that the size of |¢| goes to zero,
as stated precisely at the beginning of Section 4. We will document
that this approach predicts the small sample behavior of the
estimators better than the approach where |€| is of fixed size.
In this sense, we are dealing with an unusual type of Edgeworth
expansion.

One can argue that it is counterfactual to let the size of € go
to zero as the number of observations go to infinity. We should
emphasize that we do not literally mean that the noise goes down
the more observations one gets. The form of asymptotics is merely
a device to generate appropriately accurate distributions. Another
problem where this type of device is used is for ARMA processes
with nearly unit root (see, e.g. Chan and Wei, 1987), or the local-
to-unity paradigm. In our setting, the assumption that the size of €
goes down has produced useful results in Sections 2 and 3 of Zhang
et al. (2005). For the problem discussed there, shrinking € is the
only known way of discussing bias-variance trade-off rigorously
in the presence of a leverage effect. Note that a similar use of
triangular array asymptotics has been used by Delattre and Jacod
(1997) in the context of rounding, and by Gloter and Jacod (2001)
in the context of additive error. Another interpretation is that of
small-sigma asymptotics, cf. the discussion in Section 4.1 below.

It is worth mentioning that jumps are not the likely causes lead-
ing to the non-normality in RV’s error distributions in Section 5, as
we model both the underlying returns and the volatility as con-
tinuous processes. Also, it is important to note that our analysis
focuses on normalized RV-type estimators, rather than studen-
tized RV which has more immediate implementation in practice. In
other words, our Edgeworth expansion has the limitation of condi-
tioning on volatility processes, while hopefully it sheds some light
on how an Edgeworth correction can be done for RV-type estima-
tors while allowing for the presence of microstructure noise. For
an Edgeworth expansion applicable to the studentized (basic) RV
estimator when there is no noise, one can consult Gongalves and
Meddahi (2009). Their expansion is used for assessing the accu-
racy of the bootstrap in comparison to the first order asymptotic
approach. See also Gongalves and Meddahi (2008). Edgeworth ex-
pansions for realized volatility are also developed by Lieberman
and Phillips (2006) for inference on long memory parameters.

With the help of Cornish-Fisher expansions, our Edgeworth
expansions can be used for the purpose of setting intervals that

3 we emphasize that the phenomenon we describe is the distribution of the
estimation error of volatility measures. This is different from the well known
empirical work demonstrating the non-normality of the unconditional distribution
of RV estimators (see for example Zumbach et al., 1999; Andersen et al., 2001a,b),
where the dominant effect is the behavior of the true volatility itself.

are more accurate than the ones based on the normal distribution.
Since our expansions hold in a triangular array setting, they can
also be used to analyze the behavior of bootstrapping distributions.
Anice side result in our development, which may be of use in other
contexts, shows how to calculate the third and fourth cumulants of
integrals of Gaussian processes with respect to Brownian motion.
This can be found in Proposition 4.

The paper is organized as follows. In Section 2, we briefly re-
call the estimators under consideration. Section 3 gives their first
order asymptotic properties, and reports initial simulation results
which show that the normal asymptotic distribution can be unsat-
isfactory. So, in Section 4, we develop Edgeworth expansions. In
Section 5, we examine the behavior of our small-sample Edge-
worth corrections in simulations. Section 6 concludes. Proofs are
in the Appendix.

2. Data structure and estimators

Let {Y;},0 =ty < t; <---t; = T, be the observed (log) price
of a security at time t; € [0, T]. The basic modelling assumption
we make is that these observed prices can be decomposed into
an underlying (log) price process X (the signal) and a noise term
€, which captures a variety of phenomena collectively known as
market microstructure noise. That is, at each observation time t;,
we have

Yy =Xy + €. (2.1)
Let the signal (latent) process X follow an It6 process
er = M[dt + O'tdBt, (22)

where B; is a standard Brownian motion. We assume that, u,, the
drift coefficient, and o2, the instantaneous variance of the returns
process X;, will be (continuous) stochastic processes. We do not,
in general, assume that the volatility process, when stochastic,
is orthogonal to the Brownian motion driving the price process.*
However, we will make this assumption in Section 4.3.

Let the noise ¢, in (2.1) satisfy the following assumption,

¢, iid. withE(e;) =0, and
(23)

where 1 denotes independence between two random quantities.
Note that our interest in the noise is only at the observation times
t;'s, so, model (2.1) does not require that ¢, exists for every t. We
are interested in estimating

Var(e;,) = E€?. Also e X process,

T
X, X)y = / oldt, (2.4)
0

the integrated volatility or quadratic variation of the true price
process X, assuming model (2.1), and assuming that Y;’s can be
observed at high frequency. In particular, we focus on estimators
that are nonparametric in nature, and as we will see, are extensions
of RV.

Following Zhang et al. (2005), we consider five RV-type estima-
tors. Ranked from the statistically least desirable to the most de-
sirable, we start with (1) the “all” estimator [Y, Y], where RV
is based on the entire sample and consecutive returns are used;
(2) the sparse estimator [Y, Y]®P2® where the RV is based on a
sparsely sampled returns series. Its sampling frequency is often
arbitrary or selected in an ad hoc fashion; (3) the optimal, sparse
estimator [Y, Y]©P2rs€:9PY which is similar to [Y, Y]®P2®) except
that the sampling frequency is pre-determined to be optimal in the

4 See the theorems in Zhang et al. (2005) for the precise assumptions.
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