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a b s t r a c t

In a recent paperwe have introduced the class of realised kernel estimators of the increments of quadratic
variation in the presence of noise. We showed that this estimator is consistent and derived its limit
distribution under various assumptions on the kernel weights. In this paper we extend our analysis,
looking at the class of subsampled realised kernels and we derive the limit theory for this class of
estimators. We find that subsampling is highly advantageous for estimators based on discontinuous
kernels, such as the truncated kernel. For kinked kernels, such as the Bartlett kernel, we show that
subsampling is impotent, in the sense that subsampling has no effect on the asymptotic distribution.
Perhaps surprisingly, for the efficient smooth kernels, such as the Parzen kernel, we show that subsampling
is harmful as it increases the asymptotic variance. We also study the performance of subsampled realised
kernels in simulations and in empirical work.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

High frequency financial data allow us to estimate the
increments to quadratic variation, the usual ex postmeasure of the
variation of asset prices (e.g. Andersen et al. (2001) and Barndorff-
Nielsen and Shephard (2002)). Common estimators, such as the
realised variance, can be sensitive tomarket frictionswhen applied
to returns recorded over shorter time intervals such as 1 min,
or even more ambitiously, 1 s (e.g. Zhou (1996), Fang (1996)
and Andersen et al. (2000)). In response, two non-parametric
generalisations have been proposed: subsampling and realised
kernels by Zhang et al. (2005) and Barndorff-Nielsen et al. (2008),
respectively. Here we partially unify these approaches by studying
the properties of subsampled realised kernels.
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Our interest is the estimation of the increment to quadratic
variation over some arbitrary fixed time period written as [0, t],
which could represent a day say, using estimators of the realised
kernel type. For a continuous time log-price process X and time
gap δ > 0, the flat-top1 realised kernels of Barndorff-Nielsen et al.
(2008) take on the following form:

K(Xδ) = γ0(Xδ) +

H−
h=1

k

h − 1
H


{γh(Xδ) + γ−h(Xδ)} , H ≥ 1.

Here k(x), x ∈ [0, 1], is a weight function with k(0) = 1, k(1) = 0,
while

γh(Xδ) =

nδ−
j=1

xjxj−h,

xj = Xδj − Xδ(j−1), h = −H, . . . ,−1, 0, 1, . . . ,H,

withnδ = ⌊t/δ⌋. Think of δ as being small and so xj represents the j-
th high frequency return, while γ0(Xδ) is the realised variance of X .
The above authors gave a relatively exhaustive treatment of K(Xδ)
when X is a Brownian semimartingale plus noise.

It is important to distinguish three classes of kernel functions
k(x): smooth, kinked, and discontinuous. Examples are the Parzen,

1 It is called a flat-top estimator as it imposes that the weight at lag 1 is 1. The
motivation for this is discussed extensively in Barndorff-Nielsen et al. (2008).

0304-4076/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.jeconom.2010.03.031

http://dx.doi.org/10.1016/j.jeconom.2010.03.031
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
mailto:oebn@imf.au.dk
mailto:peter.hansen@stanford.edu
mailto:alunde@econ.au.dk
mailto:neil.shephard@economics.ox.ac.uk
http://dx.doi.org/10.1016/j.jeconom.2010.03.031


O.E. Barndorff-Nielsen et al. / Journal of Econometrics 160 (2011) 204–219 205

the Bartlett and the truncated kernel, respectively. Barndorff-
Nielsen et al. (2008) have shown that the smooth class, which
satisfy k′(0) = k′(1) = 0, lead to realised kernels that converge
at the efficient rate n1/4

δ , whereas the kinked kernels, which do not
satisfy k′(0) = k′(1) = 0, lead to realised kernels that converge at
rate n1/6

δ . The discontinuous kernels lead to inconsistent estimators
as we show in Section 3.4.

Realised kernels use returns computed starting at t = 0. There
may be efficiency gains by jittering the initial value S times, il-
lustrated in Fig. 1, producing S sets of high frequency returns xsj ,
s = 1, 2, . . . , S. Zhang et al. (2005) made this point for realised
variances. We can then average the resulting S realised kernel es-
timators:

K(Xδ; S) =
1
S

S−
s=1

K s(Xδ),

where

K s(Xδ) = γ s
0(Xδ) +

H−
h=1

k

h − 1
H


γ s
h (Xδ) + γ s

−h(Xδ)

,

γ s
h (Xδ) =

nδ−
j=1

xsjx
s
j−h, xsj = X

δ

j+ (s−1)

S

 − X
δ

j+ (s−1)

S −1
.

We call K(Xδ; S) the subsampled realised kernel—noting that this
form of subsampling is different from the conventional form of
subsampling, as we discuss below.

Here we show that subsampling is very useful for the class of
discontinuous kernels, because subsampling makes these estima-
tors consistent and converge in distribution at rate n1/6, where
n = Snδ is the effective sample size. Zhou (1996) used a simple dis-
continuous kernel and gave a brief discussion of subsampling of
that kernel. We will see that his estimator can be made consistent
by allowing S → ∞ as n → ∞, a result which is implicit in his
paper, but one that he did not explicitly draw out. For the class of
kinked kernels,we show that subsampling is impotent, in the sense
that the asymptotic distribution is the same whether subsampling
is used or not. Finally, we show that subsampling is harmful when
applied to smooth kernels. In fact, if the number of subsamples, S,
increases with the sample size, n, the best rate of convergence is
reduced to less than the efficient one, n1/4.

The intuition for these results follows from Lemma A.1 in the
Appendix. It shows that

γh(Xδ; S) =
1
S

S−
s=1

γ s
h (Xδ) ≃

S−1−
s=−S+1

kB
 s
S


γSh+s(Xδ/S),

where kB(x) = 1 − |x| ,
where the approximation is due to subtle end effects. The
implication is that

K(Xδ; S) ≃

S−1−
s=−S+1

kB
 s
S


γs(Xδ/S) +

H−
h=1

k

h − 1
H



×

S−
s=−S

kB
 s
S

 
γSh+s(Xδ/S) + γ−Sh−s(Xδ/S)


=

HS−
h=0

kS


h − 1
HS


γ̃Sh+s(Xδ/S).

So a subsampled realised kernel is a realised kernel simply
operating on a higher frequency (ignoring end effects). The implied
kernel weights, kS

 h
HS


, h = 1, . . . , SH , are convex combinations

of neighboring weights of the original kernel,

kS


hs
HS


=

S − s
S

k

h
S


+

s
S
k

h + 1
S


,

h = 0, . . . ,H, s = 1, . . . , S. (1)

Fig. 1. x1j are the usual returns. The bottom series are the offset returns xsj , s =

2, . . . , S.

In Fig. 2 we trace out the implied kernel weights for three
subsampled realised kernels. The left panels display the original
kernel functions and right panels display the implied kernel
functions. For the truncated kernel (H = 1) subsampling leads to
a substantially different implied kernel function—the trapezoidal
kernel of Politis and Romano (1995). For the kinked Bartlett kernel,
subsampling leads to the same kernel function. For a smooth
kernel function, the original and implied kernel functions are
fairly similar; however subsampling does impose some piecewise
linearity which is the reason that subsampling of smooth kernels
increases the asymptotic variance.

The connection between subsampled realised kernels and
realised kernels is perhaps not too surprising, because Bartlett
(1950) motivated his kernel with the subsampling idea. The
conventional form of subsampling is based on subseries that
consist of consecutive observations. This is different from the case
for our subsamples that consist of every Sth observation. Such
ones are called subgrids in Zhang et al. (2005). While the two
types of subsampling are different, they can result in identical
estimators. For instance, the sparsely sampled realised variance,
γ 1
0 (Xδ), is identical to Carlstein’s subsample estimator (of the

variance of a sample mean when the mean is zero); see Carlstein
(1986). Carlstein’s estimator is based onnon-overlapping subseries
and Künsch (1989) analysed the closely related estimator on the
basis of overlapping subseries. Interestingly, the (overlapping)
subsample estimator of Künsch (1989) is identical to the average
sparsely sampled realised variance called ‘‘second best’’ in Zhang
et al. (2005), so the TSRV and MSRV estimators, by Zhang et al.
(2005), Aït-Sahalia et al. (forthcoming), and Zhang (2006), can
be expressed as linear combinations of two or more subsample
estimators of the overlapping subseries type by Künsch (1989).
For additional details on the relation between the Bartlett kernel
and various subsample estimators; see Anderson (1971, p. 512),
Priestley (1981, pp. 439–440), and Politis et al. (1999, pp. 95–98).

This paper has the following structure. We present the basic
framework in Section 2 along with some known results. In
Section 3 we present our main results. Here we derive the limit
theory for subsampled realised kernels and show that subsampling
cannot improve realised kernels within a very broad class of
estimators. In Section 4, we given some specific recommendations
on empirical implementation of subsampled realised kernels and
how to conduct valid inference in this context. We present results
from a small simulation study in Section 5 and an empirical
application in Section 6. We conclude in Section 7 and present all
proofs in an Appendix.

2. Notation, definitions and background

2.1. Semimartingales and quadratic variation

The fundamental theory of asset prices says that the log-price
at time t , Yt , must, in a frictionless arbitrage free market, obey
a semimartingale process (written as Y ∈ SM) on some filtered
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