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a b s t r a c t

In this paper an approach to robust topology optimization for truss structures with material and loading
uncertainties, and discrete design variables, is investigated. Uncertainties on the loading, and spatially
correlated material stiffness, are included in the problem formulation, taking truss element length into
account. A more realistic random field representation of the material uncertainties is achieved, compared
to classical scalar random variable approaches. A multiobjective approach is used to generate Pareto
optimal solutions showing how the mean and standard deviation of the compliance can be considered
as separate objectives, avoiding the need for an arbitrary combination factor.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Truss structures are exceedingly common in engineering appli-
cations, including bridges, towers, in buildings, and numerous
mechanical applications. Design optimization of these structures
can lead to significant improvement of structural performance
and material savings. In real-world truss structures uncertainty
exists on material properties, geometry (such as manufacturing
tolerances), and loading of structures and these can have signifi-
cant impact on the performance of the structures designed using
an optimization procedure. Structural optimization taking uncer-
tainties into account is of importance to designers, since real-world
structures require both efficient use of material and accurate mod-
elling of material properties, manufacturing tolerances and loading
of structures. When considering candidate topological designs,
engineers are concerned with the sensitivity of the designs to small
variations which can be quantified as uncertainties. In order to
address this the concept of robust topology optimization (RTO)
has become increasingly important in recent years, incorporating
the variability of candidate solutions when considering the
efficiency of that solution for dealing with a specific structural prob-
lem. In the last decade several important papers focussing on RTO
have appeared. Kogiso et al. [1] used a sensitivity-based RTO for
compliant mechanisms, with random variation on the loading

direction. de Gournay et al. [2] investigated shape and topology
optimization for minimal compliance, minimizing the ‘worst case’
compliance under perturbation of the loading. Guest and Igusa [3]
used a mean compliance formulation under uncertainties on the
nodal locations, while Lógó et al. [4] developed a new loading cri-
terion for compliance minimization for probabilistic loading, and
extended this to uncertainties on the loading location [5]. Chen
et al. [6] proposed a robust shape and topology optimization
(RSTO) method, taking material uncertainties into account.
Tootkaboni et al. [7] developed a robust formulation for mass mini-
mization with uncertainties on the material properties, using a
polynomial chaos approach. Wang et al. [8] demonstrated a
method for robust topology optimization applied to photonic
waveguides, with manufacturing uncertainties. However, in spite
of this recent research interest, several issues have been neglected:

1. The representation of random uncertainties in the literature is
not always accurate, leading to incorrect quantification of the
robustness of solutions.

2. Generally more than one type of uncertainty needs to be con-
sidered: material properties, loading, nodal positions, etc. The
derivatives required for gradient-based methods become diffi-
cult or extremely complicated to define analytically in these
circumstances.

3. Robust formulations of the topology optimization problem
require a combination of two distinct quantities: mean and
standard deviation. Often this is done through a virtually arbi-
trary linear combination of these response quantities.
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4. Truss structures contain bar elements in which the material
properties vary along the length of a single element, and there-
fore cannot be dealt with in the same way as continuum
structures.

5. Truss topology optimization problems often require discrete
variable formulation [9].
Gradient-based algorithms are often poorly suited for address-
ing this class of problems.

6. Increasingly designers wish to take more than one objective
into account in the optimization of real-world structures.

7. Designers are often concerned with objective functions which
are broader than the classical compliance or mass functions.
Such objectives generally do not lend themselves to classical
gradient-based solutions and multiobjective methods of this
kind have not been properly developed.

Starting from these considerations the paper is arranged as fol-
lows: the approach to the uncertainty modelling and the optimiza-
tion approach is given in Section 2, followed by an explanation of
the multiobjective approach in Section 3. Finally, several examples
are given in Section 4 and conclusions discussed in Section 5.

2. Uncertainty quantification and optimization approach

The representation of uncertainties in robust optimization of
truss structures has been relatively neglected and investigations
thus far have failed to take some key features of trusses, such as
element length, into account. Asadpoure et al. [10] developed a
method for RTO of truss structures taking material stiffness uncer-
tainties into account, assigning scalar uncertainties to each cross-
section. Yonekura and Kanno [11] used semidefinite programming
to solve truss robust topology problems with uncertainties on
loading, while Kang and Bai [12] recently considered bounded
uncertainties in truss structures.

On the other hand random fields allow for the expression of
spatially varying material properties to be taken into considera-
tion, and the stochastic finite element framework allows for
integration of these fields into the structural analysis. The mean
and standard deviations of the resulting structural responses can
be extracted from this analysis and used in the definition of the
objective function(s).

Within the robust formulation, it is required to take both first
order (mean) and second (variance or standard deviation) order
statistical moments of the structural response h into account.
Generally a single-objective approach is adopted, considering the
weighted sum of these two quantities:

min
x

f ðxÞ ¼ E h xð Þ½ � þ a � Std h xð Þ½ � ð1Þ

However, particularly in the case of discrete variable problems, the
choice of a may not be evident. For this purpose, it is of interest to
consider the statistical moments of the response as separate objec-
tives within a multiobjective framework, as done by Padovan et al.
[13] for example.

In this investigation the uncertainties on the Young’s modulus
are expressed in terms of a spatially varying random field, which
is discretized using a Karhunen–Loève (KL) expansion. Random
fields allow for expression of spatially correlated random quanti-
ties, while being general enough to model uncorrelated quantities
too. A novel application of Spectral Stochastic Finite Element
Method (SSFEM) [14] is used for truss structures to derive the sta-
tistical measures of the response, allowing for a quantification of
the terms of the objective functions and constraints. This method
was developed by Richardson et al. [15], in which it was discussed
how the framework could be extended to allow for introduction of
loading uncertainties.

2.1. Material uncertainties

Material uncertainties are quantified in terms of probability dis-
tributions on values such as the Young’s modulus. Material models
are generally expressed in terms of Gaussian or lognormal proba-
bility distributions, both of which can be taken into account within
the SSFEM framework. SSFEM discretization generally consists of
series expansion methods, expanding any realization of the origi-
nal random field Hðx; hÞ over a complete set of deterministic func-
tions [14], where h is a vector of random variables. The obtained
series are then truncated after a finite number of terms. Various
discretization methods are available of which the KL expansion is
the most efficient in terms of the number of random variables
required for a given accuracy [14]. A Gaussian random field
Hðx; hÞ can be expanded as follows:

Hðx; hÞ ¼ lðxÞ þ
X1
i¼1

ffiffiffiffi
ki

p
niðhÞuiðxÞ ð2Þ

where lðxÞ is the mean value of the random phenomenon, ki’s and
ui’s respectively the eigenvalues and eigenfunctions of the covari-
ance kernel, and ni’s the random variables. The approximated fieldbH can be found by truncating terms above some value M:

bH ¼ lðxÞ þ
XM

i¼1

ffiffiffiffi
ki

p
niðhÞuiðxÞ ð3Þ

In continuum structures the random field may be correlated over
the entire domain, however in truss structures this is not the case.
Truss analysis accounting for material property uncertainty is often
achieved by associating a random variable with the cross section
area of each bar element. This is done analogously to the continuum
topology optimization approaches, in which the domain is dis-
cretized, using a mesh of elements of the same size (as a rule).
However, truss elements are generally not all the same length,
and is depend on the mesh of the ground structure. This approach
has two fundamental shortcomings:

1. The approach presupposes a small scale for the problem, while
trusses and individual truss elements are typically large in
scale, and

2. the relative lengths of the elements are neglected in the proba-
bilistic model.

In the deterministic case, where uncertainties are not consid-
ered, this is of little importance, however, as will be seen, when
uncertainties are taken into account, this can impact the robust-
ness of the solution. At the scale of truss elements, often several
meters in length, the variability of material properties along the
length of the element can be very significant, spatially correlated
quantities. Global 2D and 3D correlated random fields are not
appropriate for modelling this variability, since no correlation
exists between the material properties of separate elements. The
proposed approach constructs individual 1D random fields across
the individual truss elements, discretizing elements into sub-
divisions. The analysis and topology variables apply to the truss
scale elements and nodes (Fig. 1(a)). If each element is subdivided
as shown in Fig. 1(a), a simple expression can be found to approxi-
mate the relative stiffness of the element as a whole, based on
sampling the element-level field:

bHe ¼
1PNse

j¼1
1

ljðxjÞþ
PM

i¼1

ffiffiffi
ki

p
niðhÞuiðxjÞ

� � ð4Þ

where bHe is the element-level random field, lj is the mean value of
the random field for sub-division j, and Nse is the number of
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