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a b s t r a c t

The paper focuses on numerical simulation of the 3D phase-field (PF) equations for modeling cubic-to-
tetragonal martensitic transformations in shape memory alloys (SMAs), their complex microstructures
and thermo-mechanical behavior. The straightforward solution to the fourth-order diffuse interface 3D
PF equations, based on the Landau–Ginzburg potential, is numerically solved using an isogeometric
analysis. We present microstructure evolution in different geometries of SMA nanostructures under tem-
perature-induced phase transformations to illustrate the geometrical flexibility, accuracy and robustness
of our approach. The simulations successfully capture the dynamic thermo-mechanical behavior of SMAs
observed experimentally.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

As a result of their interesting solid-to-solid phase trans-
formations and coupled-physics (thermo-mechanical, magnetostric-
tive) properties, shape memory alloys (SMAs) have been used as
micro- and nano-actuators and sensors for a broad spectrum of
applications. Recently, there has been a major research focus on
using SMA nanostructures [1–7] for nanoelectromechanical
(NEMS) and microelectromechanical systems (MEMS) and biomedi-
cal applications. These applications involve designing different
geometries and using domain patterns for controlling distortions
[2]. All of these motivate the need for understanding domain pat-
terns and their thermo-mechanical properties in realistic and com-
plex geometries for better application development.

Several modeling approaches have been used to study the SMA
behaviors [8–13]. In particular, phase-field (PF) models have been
widely used to study the phase transformations in SMA meso- and
nano-structures [14–17]. Broadly, PF models for SMAs can be
divided into two approaches: the kinetic model using independent
order parameter(s) (OPs) (see, for example, [18,19]) and the strain-
based OP PF models (e.g., [14,20]). The first approach often leads to
a second-order differential equation for microstructure evolution,

while the second approach typically leads to a fourth-order dif-
ferential equation in space.

Here, we focus on the second approach and use the PF methodol-
ogy. Several 3D PF models for SMAs have been proposed in the
literature. The majority of these models do not account for the
dynamics of SMAs, but only relax the quasi-static microstructures
using a dissipation potential or directly assume a quasi-static
response. Moreover, most models assume isothermal conditions,
which neglects the thermo-mechanical coupling of SMAs, a signifi-
cant modeling limitation. The nucleation and growth of martensitic
transformations have been widely studied by using the kinetic
time-dependent Ginzburg–Landau models [18,19,21–24,16,25,26].
Using the strain-based OP PF models, the temperature- and
stress-induced phase transformations have been studied for SMAs
[27,14]. The full 3D dynamic model in its generality was first formu-
lated by Melnik et al. [28] and the first model-based explanation of
thermally-induced hysteresis was discussed in [29,30]. From a
computational perspective, most of the above studies used tradi-
tional numerical methods, such as spectral collocation or the finite
difference method. These algorithms typically lack geometrical
flexibility, as the majority of the above studies were performed on
a cubic domain with periodic boundary conditions. However, com-
plex geometries exist in real life, and there is a need for more flexi-
ble methods which can allow to model geometrically complex and
large domains with different boundary conditions. When
geometrical flexibility is needed, the finite element method is the
natural choice. However, if we do not want to include additional
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variables, solving fourth-order equations with the finite element
method requires globally smooth basis functions, and this has
proved very difficult to achieve with traditional finite elements.
Due to its geometrical flexibility and the possibility of generating
globally smooth basis functions, we propose isogeometric analysis
(IGA) as an effective numerical method to solve the fourth-order PF
model on non-trivial geometries.

IGA is a new computational method originally developed to
avoid mesh generation bottlenecks during engineering analysis
[31,32]. It was originally developed using non-uniform rational
B-splines (NURBS), a backbone of CAD and animation technology,
as basis functions, but it was later extended to accommodate
other widely-used functions in the CAD community, such as, for
example, T-Splines [33–36]. IGA has been successfully applied to
problems of fluid mechanics [37–40], solid mechanics [41–46],
fluid–structure interaction [47,48], and condensed-matter physics
[49–52]. The use of rich basis functions provides IGA with a
unique capability to model geometry exactly, in many instances,
while field variables can be approximated with enhanced accu-
racy [53,54]. IGA provides unique attributes of higher-order accu-
racy and robustness with the C1- or higher-order continuity
necessary for solving higher-order differential equations in a
variational formulation. IGA has been successfully used to solve
the PF theories and higher-order differential equations using
Galerkin variational formulations [55–59,44,60–62]. Additionally,
it has been recently shown by Gomez et al. [63] that the possibil-
ity of generating highly-smooth basis functions also permits
deriving collocation methods that approximate directly the strong
form of the equations, an approach that is not pursued in this
work.

We recently illustrated the flexibility of the IGA approach by
applying it to a 2D PF model for SMAs [64]. Here, we solve a 3D
theory for cubic-to-tetragonal phase transformations in nanostruc-
tured SMAs using IGA. As the 2D model [64] and 3D models have
distinct requirement related to the symmetry of martensitic vari-
ants, their free energy functional have distinct expressions. As a
consequence, the expressions for constitutive relationships and
the thermo-mechanical coupling term are distinct. The 3D con-
stitutive relationships and the thermo-mechanical coupling term
do not reduce to the 2D constitutive relationships and the
thermo-mechanical coupling term. As a result, the models and
numerical implementations of the 2D and 3D models are distinct.

The 3D coupled equations of nonlinear thermoelasticity are
developed using the PF model and the Ginzburg–Landau theory.
The governing laws are introduced in the IGA framework using a
variational formulation. Several numerical studies have been per-
formed to illustrate the flexibility, accuracy and stability of the
approach. Based on the above tasks, the paper is organized as fol-
lows. In Section 2, the governing coupled equations of nonlinear
thermoelasticity and solid–solid phase transformations are pre-
sented. The details of the numerical implementation of the SMA
governing equations in the IGA framework are given in Section 3.
The developed methodology is exemplified with 3D numerical
simulations on nanostructured SMA domains subjected to ther-
mally-induced phase transformations in Section 4. Finally, the con-
clusions are given in Section 5.

2. Mathematical model of SMA dynamics

The cubic-to-tetragonal phase transformations occur in SMA
alloys like NiAl, FePd or InTl. The cubic austenite phase is converted
into tetragonal martensitic variants upon mechanical or thermal
loadings as schematically shown in Fig. 1(a).

We have recently put forward a mathematical model for the 3D
coupled thermo-mechanics of SMAs [65]. Our model can be
derived from a free-energy functional using Hamiltonian
mechanics. The unknowns are the displacement field u ¼
fu1;u2;u3gT and the temperature h. We assume that the problem
takes place on the physical domain X � R3, which is an open set

parameterized by Cartesian coordinates x ¼ fx1; x2; x3gT . We will
make use of the Cauchy–Lagrange infinitesimal strain tensor
� ¼ f�ijg, whose components are defined as
�ij ¼ ui;j þ uj;i

� �
=2; i; j 2 f1;2;3g, where an inferior comma denotes

partial differentiation (e.g., ui;j ¼ @ui=@xj). Using the strain tensor,
we define the strain measures ei, for i ¼ 1; . . . ;6 as follows:

ð1Þ
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Fig. 1. Cubic-to-tetragonal phase transformations (a) schematic of microstructures: austenite (A), and martensite variants (M1, M2, M3) (b) free energy function plot at
s ¼ �1:2 (see Eq. (4)).
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