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a b s t r a c t

As the motions of nonconservative autonomous systems are typically not periodic, the definition of non-
linear modes as periodic motions cannot be applied in the classical sense. In this paper, it is proposed to
‘make the motions periodic’ by introducing an additional damping term of appropriate sign and magni-
tude. It is shown that this generalized definition is particularly suited to reflect the periodic vibration
behavior induced by harmonic external forcing or negative linear damping. In a large range, the energy
dependence of modal frequency, damping ratio and stability is reproduced well. The limitation to isolated
or weakly-damped modes is discussed.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of nonlinear modes is an attempt to extend the
ideas of linear modal analysis to nonlinear systems. Nonlinear
modal analysis is useful to characterize and quantify the energy
dependence of the essential vibration behavior of nonlinear sys-
tems. This facilitates the understanding of phenomena like energy
transfer, localization and modal interactions that may be caused by
nonlinear effects. Moreover, nonlinear modes can be used for the
purpose of model reduction. To this end, the problem is reduced
to the typically two-dimensional subspace spanned by a specific
nonlinear mode. This can greatly improve the computational effi-
ciency of vibration predictions, which is crucial e.g. for design
optimization and uncertainty analysis involving detailed models
of nonlinear structures [1,2]. For recent overviews on the general
topic, the interested reader is referred to [3,4].

Useful mathematical properties are lost when nonlinear effects
become important. For this reason, the definition of nonlinear
modes1 is less straight forward. There are basically two different

established definitions: (a) the periodic motion definition and (b)
the invariant manifold definition.

According to definition (a), nonlinear modes are viewed as per-
iodic motions of the autonomous nonlinear system [5,6]. A family
of periodic motions can be defined that are continuations with
respect to the kinetic energy. These branches of periodic solutions
of the equation of motion may or may not be connected to a
corresponding linear mode at low energies. By using continuation
and bifurcation analysis, interactions between different nonlinear
modes can be resolved. The periodic motion definition directly
associates properties of the flow to the modes such as its frequency
and its asymptotic stability. Unfortunately, it does not apply to
nonconservative systems, since their autonomous motions are
typically only periodic at possible limit cycles, i.e. at specific energy
values. Being inspired by the modes of damped linear systems,
Laxalde and Thouverez [7] defined nonlinear modes as pseudo-
periodic motions. They computed them by means of the gen-
eralized Fourier–Galerkin method. In contrast to the oscillatory
term in the usual Fourier ansatz, they considered an additional
decay term. This approach is, however, strictly limited to trigono-
metric base functions, and the notion of mode stability has not
been established yet.

According to definition (b), nonlinear modes are viewed as an
invariant relationship between the coordinates of an autonomous
system. This relationship defines a manifold in the system’s phase
space that includes the equilibrium point, where it is tangential to
the hyper-plane spanning the locus of the corresponding linear
mode [8–10]. In the simplest case without internal resonances, this
manifold is two-dimensional. Hence, a point on the manifold can be
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1 In literature, the term Nonlinear Normal Mode (NNM) is quite common. However,
the term ‘normal’ may mislead to the wrong conclusion that nonlinear modes are
orthogonal to each other. Apparently this term goes back to Rosenberg [5], who
defined nonlinear modes as vibrations in unison, i.e. where all material points cross
their equilibrium point and their extremum points simultaneously. For this type of
vibration, the motions take place on so-called modal lines in the generalized
displacement space which are normal to the surface of maximum potential energy
[4]. However, this property is only valid for symmetric conservative systems. Hence
the term ‘normal’ in this context is avoided throughout this article.
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parameterized uniquely by a suitable set of two coordinates. Only
the geometry of the invariant manifold is governed by this def-
inition. To assess the vibratory properties such as frequency and sta-
bility, the in-manifold flow can be analyzed in a second step.
Conceptually, the invariant manifold definition is not limited to
conservative systems. Compared to periodic motion based methods,
two important difficulties are often reported in practice: the diffi-
culty to find a suitable set of coordinates for a unique parametriza-
tion and the computational burden. The former difficulty often
arises in conjunction with localization and modal interactions at
higher energies. These phenomena can lead to a folding of the
invariant manifold in certain coordinate systems, so that not every
point on it can be described uniquely anymore, see e.g. [11,12]. In
terms of computational effort, it can generally be stated that peri-
odic motion based procedures tend to be more efficient than invari-
ant manifold based ones. For periodic motion based methods, only a
single periodic orbit needs to be computed at the same time. In con-
trast, often the entire manifold, being the locus of infinitely many
orbits, has to be determined simultaneously in the case of invariant
manifold based methods. This results in a larger problem dimension
and can produce considerable computational effort. To simplify the
problem, the manifold can be divided into annular regions of finite
size. But the unsteady character of the flow of nonconservative
systems generally leads to a coupling of these regions, which
requires special attention [12].

The purpose of this article is to extend the periodic motion def-
inition to dissipative systems. The general concept is introduced in
Section 2. Two computational implementations of the extended con-
cept are outlined in Section 3. They are based on Shooting and
Harmonic Balance, respectively. In Section 4, the capabilities and
limitations of the approach are assessed for several numerical
examples.

2. Extension of the periodic motion concept to dissipative
systems

This section is divided into three subsections: First, the motiva-
tion and general idea for the extension of the periodic motion con-
cept is presented. Then, the nonlinear modes are defined in such a
way that they are capable of characterizing this dynamic regime in
terms of eigenfrequency, modal damping ratio and vibrational
deflection shape. Finally, analogies to the method of force appro-
priation are indicated.

2.1. Periodic vs. damped motion concept

Suppose the motions of an autonomous nonlinear system are
described by a finite set of generalized coordinates u and velocities
_u, governed by a set of second-order ordinary differential
equations

M€uðtÞ þ f uðtÞ; _uðtÞð Þ ¼ 0 : ð1Þ

Herein, M is the mass matrix and f are linear or nonlinear restoring
as well as dissipative forces.

In the conservative case, the nonlinear modes represent peri-
odic solutions to Eq. (1). Once the periodic motion is initiated,
the autonomous system will retain this motion for all times. This
motion can be initiated by according initial conditions. Also, this
motion can be induced by harmonic external forcing at resonance,
when an appropriate term is included into the autonomous Eq. (1).
In other words, the frequency-energy characteristic of the nonlin-
ear mode is identical to the backbone of the frequency response
curves for varying excitation level. This is known as the
‘deformation-at-resonance’ property of nonlinear modes [13,3].

In the presence of nonconservative forces, an unsteady motion
takes place instead until an attractor is reached, for instance a limit
cycle or an equilibrium point. If the system is subjected to a har-
monic external forcing at resonance, this behavior is changed and
a periodic motion may persist instead. Depending on the excitation
level, different kinetic energy levels can be reached. In the noncon-
servative case, the deformation-at-resonance property does not
hold anymore, i.e. the backbone curve of the (steady-state)
frequency response curves is not identical to the (instantaneous)
frequency-energy characteristic of the autonomous system. In fact,
this deviation is not due to nonlinearity, but also holds in the linear
case: Consider the behavior of a single-degree-of-freedom oscilla-
tor with undamped eigenfrequency x0 and damping ratio D.
While the backbone curve is a straight vertical line through the

constant resonance frequency xres ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2D2

p
, the frequency

of the autonomous system is the damped eigenfrequency

xd ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

p
.

Owing to this peculiarity of nonconservative systems, it is not
ad hoc clear how to define the nonlinear modes. Essentially, there
are two different opportunities:

� damped motion concept: nonlinear modes shall capture the strict
autonomous behavior, i.e. unsteady motions in general, or
� periodic motion concept: nonlinear modes are still periodic

motions, which share, as much as possible, the properties of
the underlying autonomous system.

Both conceptions are illustrated in Fig. 1. The former concept is
the classical one and was followed for instance in [12,7]. In this
study, the latter concept was followed. More specifically, periodic
motions in the presence of (a) harmonic external forcing at reso-
nance, and (b) self-excitation by negative modal damping repre-
sent the dynamic regime of interest. The aim is therefore to
capture the vibration behavior in situations where a (permanent)
resonant excitation source is present. The term ‘resonant’ refers to
the fact that in both cases, the oscillation frequency equals one
of the system’s (energy-dependent) eigenfrequencies. It is believed
that this concept is more adjusted to persistent vibrations of non-
conservative systems. Such vibrations are often of primary concern
from a structural dynamic design point of view.

2.2. A new definition of nonlinear modes

The remaining question is now how to make the motions peri-
odic. It is proposed to enforce periodicity by an additional damping
term nM _u that is just large enough to compensate the noncon-
servative forces,

M€uðtÞ � nM _uðtÞ þ f uðtÞ; _uðtÞð Þ ¼ 0; 0 6 t < T ^ uðt þ TÞ ¼ uðtÞ :
ð2Þ

The extended definition of nonlinear modes is therefore as follows:
A nonlinear mode is as a family of periodic motions of an autonomous
nonlinear system. If the system is nonconservative, these periodic
motions are enforced by mass-proportional damping/self-excitation.

The choice of a mass-proportional damping ensures consistency
with linear modal analysis for the case of symmetric systems with
modal damping. In this case, the nonlinear modes are orthogonal
with respect to the mass matrix. Hence, the damping term does
not affect the mode shape or the natural frequency x0. The damp-
ing term is related to the modal damping by 2Dx0 ¼ n. In the non-
linear regime, however, the modes are no longer orthogonal, so
that the additional damping term can induce artificial modal cou-
pling. This makes the approach intrusive. Owing to this possible
source of inaccuracy, the valid dynamic regime will be restricted
to isolated modes where strong modal interactions are absent. It
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