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a b s t r a c t

We propose profile quasi-maximum likelihood estimation of spatial autoregressive models that are
partially linear. The rate of convergence of the spatial parameter estimator depends on some general
features of the spatial weight matrix of the model. The estimators of other finite-dimensional parameters
in themodel have the regular

√
n-rate of convergence and the estimator of the nonparametric component

is consistent but with different restrictions on the choice of bandwidth parameter associated with
different natures of the spatial weights. Monte Carlo simulations verify our theory and indicate that our
estimators perform reasonably well in finite samples.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Since Paelinck coined the term ‘‘spatial econometrics’’ in the
early 1970s to refer to a set of methods that explicitly deals with
spatial dependence and spatial heterogeneity, the field has grown
rapidly. The books by Cliff and Ord (1973), Paelinck and Klaassen
(1979), Anselin (1988), Cressie (1993) and Anselin and Florax
(1995) contribute significantly to the development of the field. For
a recent survey on the subject, see Anselin and Bera (2002).
Among the class of spatial models, spatial autoregressive (SAR)

models on lattices have attracted huge attention. Various methods
have been proposed to estimate the SAR models, which include
the method of maximum likelihood (ML) by Ord (1975) and
Smirnov and Anselin (2001), the method of moments (MM) by
Kelejian and Prucha (1999, 2010), and the method of quasi-
maximum likelihood estimation (QMLE) by Lee (2002b, 2004). A
common feature of these methods is that they are all developed to
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estimate finite dimensional parameters in the SAR models which
are frequently assumed to be linear. When an unknown infinite
dimensional parameter is present (e.g., the regression function is
of unknown form), there is a lack of guidance on the estimation
and inference process.
In this paper, we consider spatial autoregressive (SAR) mod-

els on lattices when the regression function is partially specified,
motivated by the following considerations. First, as was argued
in Paelinck and Klaassen (1979, pp. 6–9), econometric relations
in space result more often than not in highly non-linear specifi-
cations. It has well been documented in the literature that many
economic variables exhibit nonlinear relationships. For example,
economic inequality is associated with economic growth through
an inverse-U shaped Kuznets curve. Recent study also suggests
an inverse-U relationship between economic growth and envi-
ronmental quality even when the spatial effect is accounted for
(see Rupasingha et al., 2004). Ignoring the potential nonlinear re-
lationship in spatial dependence models often results in incon-
sistent estimation of the parameters of interest and misleading
conclusions.
Second, while most econometric analysis and empirical studies

using the SAR models ignore potential nonlinear functional forms,
there have been some considerations of flexible functional forms in
the literature that try to take into account certain form of nonlin-
earities in the models. See, for example, van Gastel and Paelinck
(1995), Baltagi and Li (2001), Pace et al. (2004) and Yang et al.
(2006). Most of these papers introduce a parametric transforma-
tion (e.g., Box–cox transformation) on the response variable or/and
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regressors. Nevertheless, parametric functional form transforma-
tion can at most provide certain protection against some specific
nonlinear forms. In the absence of a priori information and theoret-
ical foundation, it is generally advisable to consider more flexible
functional forms.
Third, as nonparametric techniques advance, more and more

researchers find out the advantage of nonparametric and semi-
parametric methods in modeling nonlinear economic relation-
ships (see, e.g., Yatchew, 1998). Recent researches have started
addressing the importance of nonparametric modeling in spatial
econometrics. For example, in modeling hedonic housing price,
Gress (2004) introduced two semiparametric spatial autocorrela-
tionmodels and compared themwith a variety of competing para-
metric spatial models. He found that the semiparametric models
offer more accurate and stable estimates of the regression param-
eters and better out-of-sample predictions than do the alternative
parametric models. Basile and Gress (2004) proposed a semipara-
metric spatial auto-covariance specification of the growth model
for the European economy and found that nonlinearities are im-
portant in regional growth in Europe even when the spatial de-
pendence is controlled for. As a result, assuming a common linear
relationship between economic growth and inputs is misleading.
Fourth, as Robinson (1988) remarked, a correctly specified

parametric model affords precise inferences, a badly misspecified
one, possibly seriously misleading ones, whereas nonparametric
modeling is associated with both greater robustness and lesser
precision. So an intermediate strategy is to apply a semiparametric
form, among which partially linear models are widely used.
In this paper we extend the work of Lee (2004) and consider

estimating the parameters in partially linear SAR models by the
profile QMLE method. When the error term has a known density
form, Staniswalis (1989) proposed estimating the nonparametric
regression function by maximizing the local log-likelihood. In the
case of unknown error density, we can apply the idea of the quasi-
maximum likelihood (QML). Becausewe have both parametric and
nonparametric components in our regression function, we first
concentrate out the nonparametric component by expressing the
nonparametric component as certain function of the parametric
component and the data. Thenwe estimate the parametric compo-
nent and recover the nonparametric component after that. Conse-
quently, we term our estimator as a profile QML estimator. Like Lee
(2004), our parametric component includes the spatial parameter,
the coefficient of the linear part of the regression function, and the
variance of the error term. Because the parametric component is of
finite dimension, it is also called the finite dimensional parameter
in the literature.
Like Lee (2004), the rates of convergence of the estimators for

the finite dimensional parameters depend on some general fea-
tures of the spatial weights matrix of the model. The estimator of
the spatial parameter may indeed have a

√
n-rate of convergence

and a normal limiting distribution. Nevertheless, under some cir-
cumstances, the estimator has a slow rate of convergence for some
parametric components of themodel, say when all elements of the
spatial weights matrix tend to zero as the sample size goes to in-
finity. In the former case, the nonparametric component can be
estimated consistently at the conventional nonparametric conver-
gence rate. But this is not true in the latter case where more strin-
gent conditions on the spatial weights matrix and the bandwidth
parameter are required to gain consistency of the estimators for
both the parametric and nonparametric components.
It is worth mentioning that the semiparametric models of

Gress (2004) and Basile and Gress (2004) are special cases of
our model. We can also apply our model to examine many other
well-known nonlinear relationships in economics, including the
relationship between economic inequality and economic growth,
the relationship between economic growth and environmental
inequality, the relationship between education and wages, etc.

The paper is structured as follows. In Section 2we introduce the
partially linear SAR model and the profile QMLE approach to esti-
mate the finite and infinite dimensional parameters in the model.
We make a set of assumptions in Section 3. In Section 4 we study
the asymptotic properties of the profile QMLE estimatorswhen the
information matrix is nonsingular and the parametric component
can be estimated at the regular

√
n-rate. In Section 5 we study the

asymptotic properties of the profile QMLE estimators when the in-
formation matrix is singular and some of the parametric compo-
nent can only be estimated at a slower rate. We conduct Monte
Carlo simulations to check the performance of the proposed esti-
mator in Section 6. Final remarks are contained in Section 7. All
technical details are relegated to the Appendix.
Like Kelejian and Prucha (2001), we adopt the following no-

tation and conventions. For a matrix An, we denote its norm as
‖An‖ = [tr(AnA′n)]

1/2 and the (i, j)th element of An as an,ij. Simi-
larly, for a vector an, an,i denotes its ith element. An analogous con-
vention is adopted for matrices and vectors that do not depend on
the index n, where n is frequently suppressed. We say An is uni-
formly bounded in absolute value if sup1≤i≤n,1≤j≤n |an,ij| <∞. We
say An is uniformly bounded in row sums (resp. column sums) if
sup1≤i≤n

∑n
j=1 |an,ij| ≤ ca < ∞ (resp. sup1≤j≤n

∑n
i=1 |an,ij| ≤ ca

<∞).

2. Partially linear spatial autoregressive models and profile
QMLE

In this paper we investigate estimation of the spatial autore-
gressive models:

Yn = Xnβ0 +m0(Zn)+ ρ0WnYn + Un, (2.1)

where Xn ≡ (xn,1, . . . , xn,n)′ and Zn ≡ (zn,1, . . . , zn,n)′ are n × p
and n × q matrices of regressors, respectively, Wn is a specified
constant n × n spatial weight matrix, Un ≡ (u1, . . . , un)′ is an
n-dimensional vector of i.i.d. disturbances with zero mean and
finite variance σ 20 , m0(Zn) ≡ (m0(zn,1), . . . ,m0(zn,n))′, and m0(.)
is an unknown function defined onRq. Let θ0 = (β ′0, ρ0, σ

2
0 )
′ be the

true finite dimensional parameter vector. Denote Tn(ρ) = In−ρWn
for any value of ρ. It follows that

Yn = T−1n (Xnβ0 +m0(Zn)+ Un) , (2.2)

provided Tn ≡ Tn(ρ0) is nonsingular.
Let Un(δ) = Yn − Xnβ −m0(Zn)− ρWnYn, where δ = (β ′, ρ)′.

In the case for whichm0(.) is missing from the definition of Un(δ),
Lee (2002b, 2004) proposes maximizing the Gaussian quasi log
likelihood

log Ln (θ) = −
n
2
log (2π)−

n
2
log σ 2 + log |Tn (ρ)|

−
1
2σ 2
Un (δ)′ Un (δ) , (2.3)

where θ = (β ′, ρ, σ 2)′.
Sincem0(.) is present in Eq. (2.1), we propose estimating θ by

the following two step procedure: (i) Estimate m0(z) for fixed θ ,
denote the resulting estimator as mθ (z); (ii) Plug in mθ (z) into
Un(δ) in (2.3), and obtain the QMLE estimator θ̂ for θ and mθ̂ (z)
form0(z).
To estimatem0(z) for fixed θ in the first step, we generalize the

approach of Staniswalis (1989) for likelihood-based estimation and
use a method that might be called profile quasi-maximum likeli-
hood estimation (QMLE). We give an asymptotic analysis based on
the local polynomial procedure. See Fan (1992) and Fan and Gijbels
(1996) for a discussion on the attractive properties of local polyno-
mials.
Let K(.) denote a kernel function onRq and h = hn a bandwidth

sequence. SetKh(z) = h−qK(z/h). Let Y ∗n (ρ) = Tn(ρ)Yn and denote
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