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a b s t r a c t

In recent years, the application of Self Compacting Concrete (SCC) in industry is rapidly growing, which
makes modeling of SCC casting an important part of the design process. The SCC is often combined with
fiber reinforcement to deliver a high performance material, the properties of which depend on fiber
orientation. Fiber reinforced SCC plays a fundamental role in reducing shrinkage effects in structures.
The aim of this paper is to present a numerical model for the prediction of the fiber orientation state,
determined on the basis of the knowledge of the velocity field. Statistical approach is employed, where
orientation of a fiber is described by a probability distribution of the fiber angle, which evolves with
the flow. Two ways how to solve the evolution of the probability distribution are presented. In the first
way, evolution equation for the orientation distribution function (ODF) is derived and solved by FEM. In
the second way, evolution equation for second-order orientation tensor, which represents the second
statistical moment of ODF, is solved instead. The model is validated against experimental results.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The modeling of fresh concrete flow is an interesting problem
from both theoretical and practical points of view. Knowledge of
fresh concrete behavior, flow abilities and casting capability have
a significant importance, especially in connection with high-per-
formance concrete (HPC) or self-compacting concrete (SCC). The
SCC application is essential in highly reinforced structures where
it is very hard to fill in all the voids as vibrating is not possible since
there is limited space between the steel bars [1]. The design of fiber
reinforced concrete assumes more or less uniform distribution of
fibers, or at least fiber orientation in the direction of the principal
stresses. When a material containing fibers is casted, its flow
pattern changes the orientation of the fibers. It is obvious that
the fiber orientation in the specimen is the key feature of its
mechanical behavior. Fiber reinforced material is stronger and stif-
fer in the direction of the prevailing orientation and weaker and
more compliant in the direction of the minor orientation. As there
are methods to predict mechanical properties of the reinforced
material once the orientation state is known (see for example
[2]), the prediction of flow-induced fiber orientation remains a
challenging task.

This paper presents a probabilistic based approach for predict-
ing fiber orientation induced by fluid (SCC) flow, based on the work
proposed in [3]. The model of fresh concrete flow is based on
homogeneous approach, where the concrete suspension is consid-
ered as a single homogeneous medium and its motion in the
Eulerian framework is described by the Navier–Stokes equations.
The casting simulation in the context of the Eulerian formulation
is typically modeled as a two-phase flow problem [4], where con-
crete and air are represented as two immiscible fluids separated by
an interface, which has to be updated with the flow. The model has
been described in [5].

The probabilistic approach is based on the assumption that the
orientation state of the fiber can be completely described by the
orientation probability distribution function. The evolution of
probability distribution can be described by Fokker–Planck type
of equation. The Fokker–Planck equation can be solved directly,
but this is manageable only in two dimensional problems and for
simple geometries, with a small amount of fibers. As an alternative,
it is possible to expand distribution function into a series of its sta-
tistical moments and solve evolution equations for these moments,
so called orientation tensors. The distribution function can be then
reconstructed from these tensors, see [3,6,7]. Taking into account
the statistical nature of the solved problem, it would be enough
to know the direction of prevailing fiber orientation. As it will be
shown in later sections, this information is provided by the
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statistical moment of second order. Instead of solving evolution
equation for the complete probability distribution, it is enough to
solve evolution equation only for the second order orientation ten-
sor. Then, the eigenvectors of this orientation tensor represents the
directions of prevailing and minor fiber orientations, while the
eigenvalues represents the volume fraction of the fibers oriented
in the direction of the corresponding eigenvector.

The paper is organized as follows. In Section 2 the governing
equations describing the fluid flow are described. Strong and weak
formulation of the problem are presented and the discretization
using Finite Element Method is outlined. In Section 3, a probabilis-
tic approach to fiber orientation tracking in fluid flow is presented.
Two different approaches to solve the problem are described and
discussed. Finally, in Section 4, the application of the developed
model is presented on several examples. The model has been vali-
dated on the real experiment, comparing the numerical results
with experimental fiber orientation form CT-scans.

2. Description of the flow

In this section, the governing Navier–Stokes equations of the
flow in 2D will be presented. To start, consider a two-dimensional
computational domain X � R2 fully filled with two immiscible
fluids, which occupy the portions X1ðtÞ and X2ðtÞ. The boundary
of the domain is denoted as @X and it can be decomposed into four
mutually disjoint parts CD; CN; CSWF and COUT , forming comple-
mentary subsets of the boundary @X, on which the Dirichlet,
Neumann, so called ‘‘slip with friction’’ and ‘‘do nothing’’ boundary
conditions are prescribed, respectively. The normal and tangent
vectors on @X are denoted as n and t, respectively. The interface
between the two subsets filled with fluids, X1ðtÞ and X2ðtÞ, is
denoted as RðtÞ, and ~n is the normal vector on RðtÞ. Then, for each
phase j ¼ 1; 2 in the domain X and on its boundary @X, the prob-
lem can be formulated as follows, see [8]

qj
@v
@t
þ v � $ð Þv � b

� �
� $ � r ¼ 0 in Xj � ð0;TÞ

$ � v ¼ 0 in Xj � ð0;TÞ
v ¼ g on CD � ð0;TÞ

r � n ¼ h on CN � ð0;TÞ ð1Þ
v � t þ b�1 n � r � t ¼ 0 on CSWF � ð0;TÞ

n � r ¼ 0 on COUT � ð0;TÞ
½v�RðtÞ ¼ 0 on R� ð0; TÞ

½n � r�RðtÞ ¼ 0 on R� ð0; TÞ
v ¼ v0 in Xj; t ¼ 0:

Unknown fields are velocity v and pressure p. Density q, body
forces b and functions g;h and v0 are known. On the interface
RðtÞ, conditions on jumps, denoted using square brackets ½��RðtÞ, of
velocity and normal stress components are set. Note that in the
case of fluid with surface tension, jump in normal stress would
be proportional to the curvature of the interface RðtÞ.

Standard decomposition of stress tensor r into deviatoric stress
s and hydrostatic pressure p is used

r ¼ s� pd ð2Þ

Constitutive law differs in subdomains X1ðtÞ and X2ðtÞ. Consider
that X1ðtÞ is occupied by the air and X2ðtÞ by SCC. The air can be
considered as one-parameter (viscosity l) Newtonian fluid.

s ¼ lD ð3Þ

However, fresh concrete flow has to be described by at least two
parameters. The first one is yield stress s0 which represents the ini-
tial resistance of the fresh concrete suspension to the flow. The sec-
ond parameter, plastic viscosity lpl, governs the flow. The natural

choice is then the Bingham model, see [9]. Despite its simplicity,
practical simulations have proved, that it is a suitable choice for
describing fresh concrete behavior. The motion of Bingham fluid
is governed by following equation

s ¼ lpl þ
s0ffiffiffi

Je
2

p
� �

D ; jJ2jP s0;

D ¼ 0 ; jJ2j < s0;

8<
: ð4Þ

where D denotes strain rate tensor is defined as a symmetric part of
velocity gradient

D ¼ 1
2

$v þ $vð ÞT
� �

: ð5Þ

The second invariants of deviatoric strain tensor Je
2 and the

deviatoric stress tensor J2 are defined as

Je
2 ¼

1
2

D : D; ð6Þ

and

J2 ¼
1
2
s : s: ð7Þ

2.1. Numerical scheme

Following the usual finite element procedure and defining suit-
able finite-dimensional subspaces S

h � S; Vh � V and Q
h � Q, the

discretized problem states, see [10]: find vh 2 S
h and ph 2 Q

h such
that 8wh 2 Vh; 8qh 2 Q

h:Z
X
qjw

h @vh

@t
dxþ

Z
X
qjw

h � ðvh � $vhÞdxþ
Z

X
$wh : sðvhÞdx

�
Z

X
$ �whphdx�

Z
X

wh � bdx�
Z
@X

wh � r � ndsþ
Z

X
qh$ � vhdx

þ
X

el

Z
Xe

sSUPGðvh � $whÞ � Rðvh;phÞÞdx
� �

þ
X

el

Z
Xe

sPSPG
1
q
rqh � Rðvh;phÞdx

� �
¼ 0; ð8Þ

where

Rðvh;phÞ ¼ q
@vh

@t
þ qwh � ðvh � $vhÞ � $ � sðvhÞ þ rph � b

� �

represents the residuum of the momentum balance equation. The
terms on the first two lines follow from the standard Galerkin dis-
cretization, the third line represents Streamline Upwind/Petrov-
Galekin (SUPG) stabilization term due to convection effects and
the fourth line provides Pressure Stabilizing/Petrov-Galekin
(PSPG) stabilization for elements not satisfying Babuška-Brezzi con-
dition. Note that PSPG terms are localized to the positions where
zero sub-matrix appears in the standard Galerkin formulation, pro-
viding unique solvability of the matrix problem. The choice of
stabilization parameters sSUPG; sPSPG is a non-trivial task, and the
details can be found in [5,10].

Semi-discretized formulation (see Eq. (8)) represents set of
ordinary differential equations in time, which can be discretized
using generalized mid-point rule. Since the solution procedure is
not in the center of attention of this paper, we refer an interested
reader to [11] for the details on the solution procedure.

3. Description of the fibers

In this section, description of the fiber orientation will be given.
After the formulation of basic equations of a motion for a single
fiber, probabilistic approach to the problem will be presented,
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