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a b s t r a c t

The main objective of this paper is to propose a feasible, model free estimator of the predictive density
of integrated volatility. In this sense, we extend recent papers by Andersen et al. [Andersen, T.G.,
Bollerslev, T., Diebold, F.X., Labys, P., 2003. Modelling and forecasting realized volatility. Econometrica 71,
579–626], and by Andersen et al. [Andersen, T.G., Bollerslev, T., Meddahi, N., 2004. Analytic evaluation of
volatility forecasts. International Economic Review45, 1079–1110; Andersen, T.G., Bollerslev, T.,Meddahi,
N., 2005. Correcting the errors: Volatility forecast evaluation using high frequency data and realized
volatilities. Econometrica 73, 279–296], who address the issue of pointwise prediction of volatility via
ARMAmodels, based on the use of realized volatility. Our approach is to use a realized volatility measure
to construct a non-parametric (kernel) estimator of the predictive density of daily volatility. We show
that, by choosing an appropriate realized measure, one can achieve consistent estimation, even in the
presence of jumps and microstructure noise in prices. More precisely, we establish that four well known
realized measures, i.e. realized volatility, bipower variation, and two measures robust to microstructure
noise, satisfy the conditions required for the uniform consistency of our estimator. Furthermore, we
outline an alternative simulation based approach to predictive density construction. Finally, we carry
out a simulation experiment in order to assess the accuracy of our estimators, and provide an empirical
illustration that underscores the importance of using microstructure robust measures when using high
frequency data.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In a recent paper, Andersen et al. (2003) suggest a novel, model
free, approach for forecasting daily volatility. They advocate theuse
of simple, reduced form time series models for realized volatility,
where the latter is constructed by summing up intradaily squared
returns. The predictive ability of a given model is measured via
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the R2 from the autoregressive or ARMAmodels constructed using
(the log of) realized volatility. Their findings suggest that these
ARMA based forecasts for realized volatility outperform most of
the volatility models commonly used by practitioners, such as
different varieties of GARCH models, for example. The rationale
behind their approach is that, as the time interval between
successive observations shrinks, realized volatility converges to
the ‘‘true’’ daily volatility, whenever the underlying asset price is
a continuous semimartingale. Although tick by tick and ultra high
frequency data are now available, they are often contaminated
by microstructure noise; therefore, in order to account for this
potential problem, volatility has typically been constructed using
5 min interval returns, say, or even lower frequency observations.
Hence, these reduced form time series forecasts for realized
volatility imply a loss in efficiency relative to the infeasible optimal
forecasts for the daily volatility process, based on the entire
volatility path. For the class of eigenfunction stochastic volatility
models ofMeddahi (2001), an analytical expression for such loss in
efficiency is provided by Andersen et al. (2004). In particular, they
show that the error associated with realized volatility induces a
downward bias in the estimated degree of predictability obtained
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via the R2 approach mentioned above. To overcome this issue,
Andersen et al. (2005) develop a general, model free, feasible
procedure to compute the adjusted R2 used in model evaluation.
Galbraith and Zinde Walsh (2006) use realized volatility measures
to obtain consistent Least Square and Least Absolute Deviation
deviation estimators of GARCH parameters, regardless of the
implied volatility measurement error. More recently, Andersen
et al. (2006), Aït-Sahalia and Mancini (in press) and Ghysels and
Sinko (2006) have considered ARMA models constructed using
microstructure robust measures. All of the papers mentioned
above are concerned with pointwise prediction of volatility via
ARMA models based on realized measures. On the other hand,
there are situations in which interest may focus on predictive
conditional densities, as such densities yield information not only
on the conditional mean of volatility, but also on all conditional
aspects of the predictive distribution. An important reason for
paying attention to predictive densities of volatility is the recent
development of numerous volatility-based derivative products.
Examples include volatility options on various currencies such as
the British pound and the Japanese Yen; and VOLAX futures, which
are based upon the implied volatility of DAX index options.
The main objective of this paper is to propose a feasible, model

free estimator of the conditional predictive density of integrated
volatility.
From Meddahi (2003), we know that, within the context of

eigenfunction stochastic volatilitymodels, integrated volatility fol-
lows an ARMA(p, p) structure, where p denotes the number of
eigenfunctions. However, we only have a complete characteriza-
tion of the autoregressive part of the model. Furthermore, we do
not know the marginal distribution of the innovation. For these
reasons, we cannot exploit the ARMA representation in order to
construct predictive densities for integrated volatility. Thus, we
need to follow a different route. Our approach is to construct a ker-
nel estimator of the density of daily volatility (based on a given re-
alized volatility measure), conditional on recent observed values
of the realized measure itself. We provide general regularity con-
ditions on themoments of themeasurement error between the re-
alized measure and integrated volatility. Given these conditions,
we define a sequence of bandwidth parameters under which the
kernel estimator of the conditional density is uniformly consis-
tent. We also provide a uniform rate of convergence, which de-
pends on the bias and variance of the kernel estimator, as well
as on the measurement error. Finally, we derive the relative rate,
in terms of the number of days, T , at which the bandwidth pa-
rameter and the moments of the measurement error have to ap-
proach zero, in order to ensure that all three components (bias,
variance and contribution of measurement error) approach zero
at the same speed. Also, we show that four well known real-
ized measures (realized volatility; bipower variation, (Barndorff-
Nielsen and Shephard, 2004, 2006); and the robust subsampled
realized volatility measures of (i) Zhang et al. (2005) and (ii) Aït-
Sahalia et al. (2006), Zhang (2006), Barndorff-Nielsen et al. (2008))
satisfy the conditions on the measurement error required for the
uniform consistency of the estimator. This means that we can pro-
vide a feasible model free estimator of the conditional predic-
tive density of integrated volatility even in presence of jumps or
microstructure noise.
Suppose that we knew the data generating process for

the instantaneous volatility. While this information suffices
to characterize the autoregressive structure of the integrated
volatility process, often it does not suffice to recover the ‘‘entire’’
data generating process. Nevertheless, in this casewe can construct
a kernel density estimator using the integrated volatility values
simulated under the null model (and ‘‘evaluated’’ at the estimated
parameters) instead of using a realized measure. Under mild
regularity conditions, and if the nullmodel is correct, as the sample

size and the number of simulations grow at an appropriate rate,
the conditional density based on kernel estimators of simulated
volatility converges to the ‘‘true’’ conditional density of integrated
volatility. A natural question iswhether there is some advantage, in
terms of a faster rate of convergence, in using simulated volatility
rather than realized measures. We show that the answer to this
question depends on the relative rate at which the number of
intradaily observations, M , grows, relative to the number of days
T , and on the specific realized measure used.
In order to evaluate the accuracy of our proposed estimator

constructed using realized measures, we carry out a simulation
experiment in which the pseudo true predictive density is
compared with the one estimated using our methodology.
This is done for various daily sample sizes and for a variety
of different intraday data frequencies and for different data
generating processes, including jumps and microstructure noise.
As expected, our subsampled realized volatility measures yield
substantially more accurate predictions than the other measures,
when data are subject to microstructure noise. Furthermore, the
predictive estimator is seen to perform quite well, overall, based
on the examination of mean square error loss. We also compare
the relative accuracy of predictive densities based on realized
measures and on simulated integrated volatility. Finally, we
provide an empirical illustration that underscores the importance
of usingmicrostructure robustmeasures when using data sampled
at a high frequency.
The rest of the paper is organized as follows. Section 2 describes

the model. Section 3 provides a uniform rate of convergence
for the conditional density estimator based on a given realized
measure. Section 4 provides a uniform rate of convergence for
the conditional density estimator based on simulated integrated
volatility, for the case in which we know the data generating
process of the instantaneous volatility process. Section 5 provides
conditions under which realized volatility, bipower variation and
the microstructure robust measures of realized volatility satisfy
the conditions on the measurement error that are required for
the uniform consistency of the kernel estimator based on realized
measures. Section 6 reports the results from our simulation
experiment, and our empirical illustration is discussed in Section 7.
Finally, Section 8 contains some concluding remarks. All proofs are
gathered in the Appendix.

2. The model

The observable state variable, Yt = log St , where St denotes
the price of a financial asset or the exchange rate between two
currencies, is modeled as a jump diffusion process with constant
drift term and variance term modeled as a measurable function of
a latent factor, ht , which is also generated by a diffusion process.
Thus,

dYt = mdt + dzt +
√
σ 2t

(√
1− ρ2dW1,t + ρdW2,t

)
, (1)

whereW1,t and W2,t refer to two independent Brownian motions
and volatility is modeled according to the eigenfunction stochastic
volatility model of Meddahi (2001), so that

σ 2t = ψ(ht) =
p∑
i=1

aiPi(ht)

dht = µ(ht , θ)dt + σ(ht , θ)dW2,t , (2)
for some θ ∈ Θ, where Pi (ht) denotes the i-th eigenfunction of the
infinitesimal generator A associated with the unobservable state
variable ht .1 The pure jump process dzt specified in (1) is such that

1 The infinitesimal generatorA associated with ht is defined by

Aφ (ht ) ≡ µ (ht ) φ′ (ht )+
σ 2 (ht )
2

φ′′ (ht )
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