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a b s t r a c t

This paper proposes two types of stochastic correlation structures for Multivariate Stochastic Volatility
(MSV) models, namely the constant correlation (CC) MSV and dynamic correlation (DC) MSV models,
from which the stochastic covariance structures can easily be obtained. Both structures can be used for
purposes of determining optimal portfolio and risk management strategies through the use of correlation
matrices, and for calculating Value-at-Risk (VaR) forecasts and optimal capital charges under the Basel
Accord through the use of covariance matrices. A technique is developed to estimate the DC MSV
model using the Markov Chain Monte Carlo (MCMC) procedure, and simulated data show that the
estimationmethodworks well. Variousmultivariate conditional volatility andMSVmodels are compared
via simulation, including an evaluation of alternative VaR estimators. The DCMSVmodel is also estimated
using three sets of empirical data, namely Nikkei 225 Index, Hang Seng Index and Straits Times Index
returns, and significant dynamic correlations are found. TheDynamic Conditional Correlation (DCC)model
is also estimated, and is found to be far less sensitive to the covariation in the shocks to the indexes. The
correlation process for the DCC model also appears to have a unit root, and hence constant conditional
correlations in the long run. In contrast, the estimates arising from the DC MSV model indicate that the
dynamic correlation process is stationary.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Static and dynamic covariance and correlation structures are
used routinely for optimal portfolio choice, risk management,
obtaining Value-at-Risk (VaR) forecasts, and determining optimal
capital charges under the Basel Accord. Although the conditional
volatility literature has examined the theoretical development of
alternative dynamic covariance and correlation structures, this
issue does not yet seem to have been examined in detail in the
Multivariate Stochastic Volatility (MSV) literature.
For multivariate GARCHmodels, the most general expression is

called the ‘vec’model (see Engle and Kroner (1995)). The vecmodel
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parameterizes the vector of the conditional covariance matrix of
the returns vector, which is determined by its lags and the vector
of outer products of the lagged returns vector. A serious issue with
the vec model is that it has many parameters to be estimated,
and will not guarantee positive definiteness of the conditional
covariance matrix without further restrictions. Bollerslev et al.
(1988) and Ding and Engle (2001) suggested the diagonal GARCH
model, which restricts the off-diagonal elements of the parameter
matrices to be zero, and also reduces the number of parameters
drastically in computing the conditional covariance matrix. Engle
and Kroner (1995) proposed the Baba, Engle, Kraft and Kroner
(BEKK) specification that guarantees the positive definiteness of
the conditional covariance matrix, which is essential for obtaining
sensible VaR forecasts.
In the context of modelling conditional correlations rather than

conditional covariances, Bollerslev (1990) proposed the Constant
Conditional Correlation (CCC) model, where the time-varying
covariances are proportional to the conditional standard deviation
derived from univariate GARCH processes. This specification also
guarantees the positive definiteness of the conditional covariance
matrix. Ling andMcAleer (2003) develop the asymptotic theory for
several constant correlation vector ARMA–GARCH models. As an
extension of the CCC model, Engle (2002) suggested the Dynamic
Conditional Correlation (DCC)model, which allows the conditional
correlation matrix to vary parsimoniously over time.
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Table 1
Constant and dynamic correlation multivariate GARCH models.

Model Specification Number of parameters Type

CCC: Bollerslev (1990) Pt = P , m2+5m
2 C

ωii,t = wi + αiε
2
ii,t−1 + βiωii,t−1

DCC: Engle (2002) Pt = Q ∗−1t QtQ ∗−1t , m2+5m
2 + 2 D

Qt = (1− γ − δ) S + γ zt−1z ′t−1 + δQt−1 ,
Q ∗t = diag

{√
q11,t , . . .

√
qmm,t

}
,

zt = D−1t εt ,
ωii,t = wi + αiε

2
ii,t−1 + βiωii,t−1

BEKK: Engle and Kroner (1995) Ωt = C ′C + Aεt−1ε′t−1A
′
+ BΩt−1B′ 5m2+m

2 D
Diagonal GARCH: Ding and Engle (2001) Ωt = C + A ◦ εt−1ε′t−1 + B ◦Ωt−1

3m2+3m
2 D

In the column named ‘Type’, ‘D’ denotes dynamic conditional correlation models and ‘C’ denotes the constant conditional correlation model.

The development of dynamic correlation and covariance
models has proceeded at a faster pace in the conditional
volatility literature than in its stochastic volatility counterpart.
Two reasons for this would seem to be the development
of parsimonious multivariate dynamic conditional correlation
models and their relative ease in estimation. McAleer (2005)
provides a comprehensive comparison of a wide range of
univariate and multivariate, conditional and stochastic, financial
volatility models. Asai et al. (2006) discuss recent theoretical
developments in the MSV literature.
Recently, Yu and Meyer (2006) developed the time-varying

correlation model for the bivariate SV model, based on the Fisher
transformation, as suggested by Tsay (2002) in a bivariate GARCH
framework. Yu and Meyer (2006) also compared the empirical
performance of nine alternative MSV models for a bivariate
exchange rate series and found that MSV models that allow for
time-varying correlations generally fit the data better. An obvious
drawback of their analysis is the difficulty in generalizing their
dynamic correlation model to a higher dimension. Yu and Meyer
(2006, p. 366), note that ‘‘it is not easy to generalize the model
into higher dimensional situations’’. The dynamic correlation MSV
models that are developed in this paper are not restricted to be
bivariate.
As a contribution to the development of parsimonious dynamic

correlation MSV models that can be estimated with relative
ease, Section 2 proposes two types of stochastic correlation
structures for MSV models, namely the constant correlation (CC)
MSV and dynamic correlation (DC) MSV models. The dynamic
stochastic covariance matrices may be obtained easily from the
dynamic stochastic correlation matrices. Alternative DC MSV
models are developed. Both structures can be used for purposes
of determining optimal portfolio and risk management strategies
through the use of dynamic correlations, and for calculating Value-
at-Risk (VaR) forecasts and optimal capital charges under the Basel
Accord through the use of dynamic covariances. A technique is
developed in Section 3 for estimating the DC MSVmodel using the
Markov Chain Monte Carlo (MCMC) procedure. The properties of
the estimation method are examined using simulated data, and
various multivariate conditional volatility and MSV models are
compared via simulation, including an evaluation of alternative
VaR estimators. Section 4 provides an empirical example in which
the model is estimated using three sets of empirical data. Some
concluding remarks are given in Section 5.

2. Dynamic correlation models

In this section, the following definitions are used. Let εt be
an m-dimensional stochastic vector. The operator vecd(.) creates
a vector from the diagonal elements of a matrix. The operator
◦ denotes the Hadamard (or element-by-element) product. Let
exp(.) denote the element-by-element exponential operator, and
diag{x} = diag{x1, . . . , xm} denote the m × m diagonal matrix,
with diagonal elements given by x = (x1, . . . , xm)′. For anym×m
matrix A, the matrix exponential transformation is defined by the

power series expansion:

Exp(A) =
∞∑
s=0

(1/s!)AS,

where A0 reduces to them×m identity matrix and As denotes the
standard matrix multiplication of A s times. Thus, in general, the
elements of Exp(A)donot typically exponentiate the elements ofA.

2.1. Multivariate conditional volatility models

In the framework of the conditional volatility model, it is
assumed that E (εt | =t−1) = 0 and E

(
εtε
′
t | =t−1

)
= Ωt , where

=t is an information set up to period t . Thus, Ωt =
{
ωij,t

}
is

the covariance matrix of εt conditional on past information. Let
Dt = diag

{√
ω11,t , . . .

√
ωmm,t

}
, so that the dynamic conditional

correlation matrix, Pt , is defined by

Pt = D−1t ΩtD
−1
t . (1)

The dynamic conditional covariancematrix,Ωt , can be obtained
from (1) by pre- and post-multiplication of both sides by the
diagonal matrix to yieldΩt = DtPtDt .
Table 1 shows the constant conditional correlation model and

three dynamic conditional correlation models, namely, the CCC
model of Bollerslev (1990), the DCC model of Engle (2002), the
BEKK model of Engle and Kroner (1995), and the diagonal GARCH
model of Ding and Engle (2001). The first two models are based
on the specification of the conditional correlation matrix, Pt ,
while the remaining two models are based on the conditional
covariance matrix,Ωt . For the BEKK and diagonal GARCH models,
the conditional correlation matrix defined by is dynamic. The
CCC and DCC models are parsimonious, whereas the BEKK and
diagonal GARCH models are not. The latter two models can be
mademore parsimonious by the imposition of suitable parametric
restrictions. In multivariate conditional volatility models, the
number of parameters increases to the order of m2. When m = 5
(10), the numbers of parameters in the CCC and DCCmodels are 25
(75) and 27 (77), respectively,while those in the BEKK anddiagonal
GARCH models are 65 (255) and 45 (165),respectively.
Given the above, the primary features of the DCC model are

that (i) each εit follows the univariate GARCH model, as in the
estimation of the CCC model, which essentially follows a multiple
univariate structure, and (ii) dynamic conditional correlations can
be obtained through the addition of only twoparameters to theCCC
model. Thus, the DCCmodel is parsimonious in capturing dynamic
correlations and covariances.

2.2. Multivariate stochastic volatility models

For MSV models, it is assumed that E (εt | Ωt) = 0 and
E
(
εtε
′
t | Ωt

)
= Ωt , where the covariance matrix,Ωt , is stochastic

and symmetric positive definite. The first MSV model, which will
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