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a b s t r a c t

Most of the practical engineering structures exhibit a certain degree of nonlinearity due to nonlinear
dynamic characteristics of structural joints, nonlinear boundary conditions and nonlinear material prop-
erties. In this paper, we present a new technique based on null subspace analysis to detect the presence of
nonlinearity and estimate the degree of nonlinearity in structures using ambient vibration data.
Effectiveness of the proposed approach is demonstrated using carefully designed numerical examples
and also using the experimental data. Extended version of the technique is presented to detect the non-
linearity using a single sensor data.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Structural systems are often referred to as being linear or non-
linear. However, all real structures are inherently nonlinear.
Nonlinear behavior is observed even in rather simple structures
like plates and beams, as a result of buckling or large deformation
related effects. The nonlinear behavior of a structure may be also
possible due to a local (friction, joint and link flexibility, backlash
and clearance, nonlinear contact) or a global (geometric nonlin-
earities, nonlinear material behavior) nonlinearities. However, in
most of the cases they are usually approximated by a linear model
for the purpose of dynamic analysis and design, solely due to
computational ease and convenience. For linear models, modal
based methods are most widely used in structural system identifi-
cation, model updating, structural control and health monitoring.

However, the presence of nonlinearity in a structural system
changes its behavior, thus making the use of the linear model
improper and in the majority of cases even impossible. The basic
principles that apply for a linear system, which form the basis for
modal analysis are not valid anymore for nonlinear systems. The
superposition and the homogeneity as well as the Maxwell
reciprocity principles do not apply for a nonlinear system. A non-
linear mechanical system shows a tendency to redistribute the
energy of the input spectrum. This results in modulation, super
and sub-harmonics and broadband spectra in some areas. The

generation of harmonics depends on the excitation. The frequency
response functions are also excitation dependent, which makes
impossible their further application for modal analysis. Modal
models are unsuitable to predict the behavior of nonlinear sys-
tems. Accordingly, new tools for detection, quantification and
modeling of nonlinearities in dynamical systems are necessary.
Several methods have recently been developed for detecting the
presence of nonlinearity in a system [1–6]. Some procedures rely
on characteristic features for nonlinear systems, like the distortion
of the FRF and Hilbert transform of FRF plots. During recent years,
considerable research work has been reported on modeling nonlin-
ear behavior of dynamic systems, suggesting a variety of
approaches. The use of Volterra series [7] to describe the nonlinear
systems is one of the most widely accepted one.

Several methods exist in the literature for detecting the pres-
ence of non-linearity. These methods can be broadly classified as
frequency domain and time domain analysis based techniques
[1]. The frequency domain based nonlinear detection methods
include homogeneity test and Hilbert transform of frequency
response functions, coherence function, Hilbert marginal spec-
trum, wavelet packet transform component correlation coefficient,
bispectral analysis, wavelet packet energy spectrum, etc. Similarly,
the time domain nonlinear indicators include instantaneous fre-
quency, holder exponent, auto and cross correlations of time his-
tory response, etc. More details on these detection methods can
be found in Kerschen et al. [1], Worden and Tomlinson [3] and
Hickey and Worden [8].

Civil structures will inevitably suffer a certain level of deteri-
oration during its service life owing to corrosion and/or fatigue
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damage, aging of construction materials, long-term effect of loads,
sudden attacks of accidental and natural catastrophes. Damage will
make the structural properties, nonlinear and vary with time. Thus
the measured structural vibrations are often time-varying and
nonstationary [9]. Moreover, nonlinearities exist in all civil struc-
tures to some degree, which arise from the nonlinearity of mate-
rial, changing of geometric configurations when a structure
experiences large deformations (i.e., geometric nonlinearity) or
changing of boundary conditions and system connectivity (e.g. a
roller support is either in contact or not in contact, cracks opening
and closing). Therefore, structural vibration properties (frequen-
cies, mode shapes and damping) vary with time. The identification
process requires to analyze the nonlinear and non-stationary struc-
tural vibration data. Moreover, for civil structures, it is often more
convenient to measure the ambient vibration data than forced
response data. Hence we emphasize more on methods which
enables one to use the ambient data for detection of nonlinearity.
Most of the techniques listed above require both input and output
measurements to detect the presence of nonlinearity. Even though
there are few techniques, which use only ambient vibration data,
they are highly susceptible to measurement noise. Recently, Hot
and Kerschen [10] has proposed a technique based on principal
component analysis for identifying the presence and the level of
nonlinearity present in the structures, where we can conveniently
utilize ambient vibration data.

In this paper, we present the application of a technique based on
null subspace for detection of the presence and also the degree of
nonlinearity in civil engineering structures. Several numerical
examples are solved to demonstrate the effectiveness of the pro-
posed approach for detection of nonlinearity, which includes few
numerically simulated examples and experimental results of the
benchmark structures. The numerical investigations carried out in
this paper clearly indicate that the proposed null subspace method
is an effective tool for detecting the presence of nonlinearity even in
the presence of measurement noise. Studies also reveal that we can
precisely assess the degree of nonlinearity of the structure using this
method. In this paper, we will draw comparisons with the existing
PCA [11] based detection technique and highlight the higher degree
of sensitivity and also versatility of the proposed technique.

2. Null space based approach

The null space based algorithm is partially inspired by the con-
cept of subspace identification. However, for detection of the pres-
ence of nonlinearity, we do not require modal identification. The
null space method has earlier been applied to damage detection
[12]. In this paper, we have proposed to explore this method to
detect the presence of nonlinearity and also to assess its severity.

In order to illustrate the null space based approach for detecting
the presence of nonlinearity, we consider a structural system for
which the time history response is to be measured. Since, the
response is usually measured in the form of acceleration time
history, the structural system is instrumented with ‘m’ accelerome-
ters. The acceleration time history response is measured periodi-
cally resulting in several data sets. The sampled data can be
partitioned into several data subsets, in case of continuous online
monitoring of the structure. We can construct a block Hankel
matrix Hp,q consist of ‘p’ block rows and ‘q’ block columns of the
output covariance matrix for each data subset and it can be written
as

Hp;q ¼

K0 K1 � � � � � �
K1 K2 � � � � � �
� � � � � � � � � � � �

Kp�1 Kp � � � � � �

Kq�1

Kq

� � �
Kpþq�2

2
6664

3
7775; q P p ð1aÞ

The indices p and q in the Hankel matrix define the number of con-
sidered time shifts and should be chosen based on the assumed sys-
tem order n, i.e. q = n � p + 1. In the present work, we have
considered p = q. Ki represents the output covariance, which is esti-
mated from a set of N output data samples of the acceleration time
history response.

Ki ’
1

ðN � iÞ
XN�i

k¼1

ykþiy
T
k ; 0 6 i 6 N � 1 ð1bÞ

where {y} is the acceleration time history response of a particular
sensor. yk refers to the acceleration at kth time step. It may be
pointed out that the block Hankel matrices give an instantaneous
representation of responses and therefore these block Hankel matri-
ces improve the sensitivity of the detection of nonlinearity in the
structure when compared to the observation matrices. Hence we
prefer to use the block Hankel matrices in the present work.

According to the subspace identification theory [13,14], the
state matrices can be extracted from the Hankel matrix which
represents the modal subspace spanned by the mode-shape vec-
tors of the structure. We can subsequently identify the modal
parameters (natural frequencies, damping ratios and mode shapes)
also. However, it should be mentioned here that our aim is not in
identifying the precise values of modal parameters or other struc-
tural features. Instead, we are more concerned with only relative
changes of the characteristic features that are necessary to indicate
the presence of nonlinearity. For this purpose, a method based on
the null subspace concept of these Hankel matrices is used.

Null Subspace analysis is basically a principal component analy-
sis of the Hankel autocorrelation matrix. Performing the singular-
value decomposition (SVD) on the weighted Hankel matrix, we get:

�H ¼W1Hp;qW2 � U1 U2½ �
S1 0
0 0

� �
V1 V2½ �T ¼ U1S1VT

1 ð2Þ

where W1 and W2 are weighting matrices. Since we are only inter-
ested in monitoring relative changes of the characteristic features
that are necessary for detection of the presence of nonlinearity in
the present work and not on the modal parameter estimation, the
invertible weighting matrices W1 and W2 are chosen as identity
matrices for simplicity and the same was also suggested by Yan
and Golinval [12]. However, a discussion on the effect of the
weighting matrices on modal identification can be found in Van
Overschee and De Moor [13].

The diagonal matrix S1 contains n = 2Nm non-zero singular val-
ues sorted in decreasing order, where Nm indicates the number of
modes. The following four fundamental subspaces can be extracted
by performing SVD on the weighted Hankel matrix, �H 2 Rr�c where
r = m� p and c = m� q,

i. U1 with maximum number (n) of independent column vec-
tors that span the column space of �H.

ii. VT
1 with maximum number (n) of independent row vectors

that span the row space of �H.
iii. U2 with maximum number (c � n) of independent column

vectors that span the column null-space of �H.
iv. VT

2 with maximum number (r � n) of independent row vec-
tors that span the row null-space of �H.

It may be pointed out that the exact order n of the system is not
fixed and it varies depending on the input signal. In order to find
the exact order n, we have to scan through the singular values in
S, till the values are equal to zero or very insignificant and take
the left hand side vectors, U1 corresponding to those null singular
values.
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