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a b s t r a c t

This paper applies classical exponential-family statistical theory to develop a unifying framework for
testing structural parameters in the simultaneous equationsmodel under the assumption of normal errors
with known reduced-form variance matrix. The results can be divided into the limited-information and
full-information categories. In the limited-information model, it is possible to characterize the entire
class of similar tests in a model with only one endogenous explanatory variable. In the full-information
framework, this paper proposes a family of similar tests for subsets of endogenous variables’ coefficients.
For both limited- and full-information models, there exist power upper bounds for unbiased tests. When
the model is just-identified, the Anderson–Rubin, score, and (pseudo) conditional likelihood ratio tests
are optimal. When the model is over-identified, the (pseudo) conditional likelihood ratio test has power
close to the power envelope when identification is strong.
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1. Introduction

Applied researchers are often interested in making inferences
about the parameters of endogenous variables in a structural
equation. Identification is achieved by assuming the existence
of instrumental variables uncorrelated with the structural error
but correlated with the endogenous regressors. If the instruments
are strongly correlated with the regressors, standard asymptotic
theory can be employed to develop reliable inference methods.
However, as emphasized in recent work by Nelson and Startz
(1990), Bound et al. (1995), Dufour (1997), and Staiger and Stock
(1997), these methods are not satisfactory when instruments are
only weakly correlated with the regressors. In particular, the usual
tests and confidence regions do not have correct size in the weak
instrument case.
The main contribution of this paper is to establish a connection

between the weak-instrument problem and classical statistical
theory on hypothesis testing. This finding allows the construction
of tests for endogenous variables’ coefficients with correct size
even when instruments can be weak. To develop the theory of
hypothesis testing, this paper provides a mathematical definition
to distinguish limited-information and full-information models.
In the limited-information model with one endogenous vari-

able, there is a necessary and sufficient condition for a test of the
endogenous variable’s coefficient to be similar. This unifies the
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theory of similar tests of Anderson and Rubin (1949), Dufour and
Jasiak (2001), Kleibergen (2002), and Moreira (2002, 2003). The
class of similar tests is large and includes all unbiased tests. In the
just-identified model, the Anderson–Rubin, score, and conditional
likelihood ratio (CLR) tests are optimal among the class of unbi-
ased tests. In the over-identifiedmodel, there exists a power upper
bound for unbiased tests. No test can uniformly achieve this power
envelope.
Monte Carlo simulations show that the CLR test for the

endogenous variable’s coefficient has good power overall in over-
identified models. It dominates the Anderson–Rubin and score
tests, and has power close to the power envelope for unbiased tests
when instruments are strong. This finding provides a refinement
over the first-order asymptotics, which asserts that the score and
CLR tests are optimal under local alternatives and are equivalent to
the Anderson–Rubin test with fixed alternatives.
In the full-information model with more than one endogenous

variable, this paper proposes a class of similar tests for subsets of
the endogenous variables’ coefficients. Available procedures either
rely on strong partial identification or are biased. Within this class
of similar tests, there are three tests based on the Anderson–Rubin,
score, and CLR approaches for an endogenous variable’s coefficient
in the full-information model. Previous Monte Carlo results carry
over to the full-information model: the (pseudo) CLR test has
overall good power and, in particular, reaches a power bound for
unbiased tests.
The remainder of this paper is organized as follows. Section 2

presents the simultaneous equations model and introduces some
notation. Section 3 derives results for the one endogenous
variable’s coefficient in the limited-information model. Section 4
obtains tests for subsets of endogenous variables’ coefficients
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in the full-information model. Section 5 obtains asymptotic
results based on finite-sample theory. Section 6 provides power
comparisons for the tests proposed in Sections 3 and 4. Section 7
concludes and gives direction for future research. All proofs are
given in Appendix B.

2. The simultaneous equations model

Consider the structural equation
y1 = y2β + Xγ + u, (1)
where y1 is an n-dimensional vector, y2 is an n × l matrix,
X is an n × m matrix of exogenous variables, and u is an
n × 1 unobserved error vector. This equation is assumed to be
part of a larger linear simultaneous equations model, in which
y2 is allowed to be correlated with u. The complete system
contains exogenous variableswhich can be used as instruments for
conducting inference on β . The restrictions on the reduced-form
regression coefficients are implied by the identifying assumption
that there exist exogenous variables which do not appear in (1).
Specifically, it is assumed that

y2 = X Γ̃ + Z̃Π + v2, (2)
where Z̃ is an n × k matrix of exogenous variables having full
column rank, Π is a k × l matrix, and Γ̃ is an m × l matrix.
For convenience, transform the matrix Z̃ so that the transformed
matrix Z and the exogenous regressor matrix X are orthogonal:
Z ′X = 0. For any matrix Q having full column rank, let NQ =
Q (Q ′Q )−1Q ′ and MQ = I − NQ . Then, the underlying stochastic
equation for y2 is given by
y2 = XΓ + ZΠ + v2, (3)

where Z = MX Z̃ , and Γ =
(
X ′X

)−1 X ′̃ZΠ + Γ̃ . The reduced-form
model is
y1 = X (Γ β + γ )+ ZΠβ + v1 (4)
y2 = XΓ + ZΠ + v2.
The reduced-form model for Y = [y1, y2] can be written concisely
as
Y = X

(
Γ a′ + γ e′1

)
+ ZΠa′ + V ,

where a = [β, Il]′ and e1 =
[
1, 0′l

]′. The n rows of the reduced-
form errormatrix V = [v1, v2] are assumed to be i.i.d. normal with
mean zero and known (l+ 1)× (l+ 1) variance matrix

Ω =

[
ω11 ω12
ω21 ω22

]
, (5)

which is partitioned conformably to Y = [y1, y2]. The assumption
of known Ω will be relaxed later using the weak-instrument
asymptotics of Staiger and Stock (1997).
The goal is to test (subsets of) β , treating Π , γ , and Γ as

nuisance parameters. A test is said to be of size α if the probability
of rejecting the null hypothesis when it is true does not exceed α.
That is,
sup prob(rejecting H0) = α,
where the sup is over all values of β ,Π , γ , and Γ consistent with
the null hypothesis. Since these parameters are unknown, finding
a test with correct size is nontrivial. The task is simplified if one
can find tests whose null rejection probability does not depend on
the nuisance parameters at all. These tests are called similar tests. If,
for example, one rejects the null if some test statistic T is greater
than a given constant, the test will be similar if the distribution
of T under the null hypothesis does not depend on the nuisance
parameters. Such test statistics are said to be pivotal. If T has a
null distribution depending on the nuisance parameters but it can
be bounded by a pivotal statistic, then T is said to be boundedly
pivotal.

In practice, one often uses test statistics that are only
asymptotically pivotal:
lim
n→∞

prob (T > c) = G(c),

where the approximate distribution functionG does not depend on
the unknown parameters β ,Π , γ , and Γ compatible with the null
hypothesis. These tests may be satisfactory when the convergence
is uniform and the sup and lim operators can be interchanged.
However, if the convergence is not uniform, the actual size of the
test may differ substantially from the size based on the asymptotic
distribution of T . In fact, Dufour (1997) extends finite-sample
results by Gleser and Hwang (1987) to show that the true levels
of the usualWald-type tests deviate arbitrarily from their nominal
levels if Π ∈ P cannot be bounded away from the origin; that is,
0 ∈ P. In this sense, the instruments can be arbitrarily weak. Since
weak instruments appear in empirical research, it is desirable to
find tests with approximately correct size α even whenΠ cannot
be bounded away from the origin.

3. One endogenous variable

When l = 1 andm > 0, the reduced-form model is given by
y1 = X (Γ β + γ )+ ZΠβ + v1 (6)
y2 = XΓ + ZΠ + v2,
where β is a scalar, Π is a k × 1 vector, and γ and Γ are m × 1
vectors. The focus here is to construct tests with correct size for
the null hypothesis Hβ : β = β0.
Under the normality assumption, the probability model is a

member of the curved exponential family. The sufficient statistics
for (γ ,Γ ) and (β,Π) are given by X ′Y and Z ′Y , respectively. The
nuisance parameters γ and Γ can be eliminated by requiring the
test to be invariant to linear transformations of X . Any invariant
test can be written as a function of a maximal invariant statistic;
see Theorem 6.2.1 of Lehmann (1986, p. 285). For the group G of
transformations that preserves Hβ , g (Y ) = Y + XF for arbitrary
conformable matrices F , the maximal invariant in terms of the
sufficient statistic is Z ′Y . For any non-singular 2 × 2 matrix D,
Z ′YD is also a maximal invariant. A convenient choice is D =[
b0,Ω−1a0

]
, where b0 = (1,−β0)′ is orthogonal to a0 = (β0, 1)′.

This yields the pair

Sβ = Z ′Yb0 = Z ′u0 and Tβ = Z ′YΩ−1a0, (7)
where u0 = y1 − y2β0.
The vectors Sβ and Tβ are independent and normally distributed

under both the null and alternative hypotheses. Specifically,
Sβ ∼ N(Z ′ZΠ(β − β0), Z ′Z · b′0Ωb0) and

Tβ ∼ N(Z ′ZΠ · a′Ω−1a0, Z ′Z · a′0Ω
−1a0).

Although the null distribution of Sβ does not depend on the
nuisance parameterΠ , the null distribution of Tβ is very sensitive
to the value ofΠ . A little algebra shows that
Tβ = a′0Ω

−1a0 · Z ′ZΠ̂,

where Π̂ is the maximum likelihood estimator of Π when β is
constrained to take the null value β0. The unknown parameter
Π is assumed to change freely, at least over a large enough set.
Assumption LI gives a mathematical meaning to the notion of
limited-information model.

Assumption LI (Limited Information). The set P in which Π lies
contains a k-dimensional rectangle.

All tests invariant to the group G can be written as (possibly
randomized) functions of Sβ and Tβ . Specifically, let φ be a critical
function such that 0 ≤ φ ≤ 1. For each Sβ and Tβ the test rejects
or accepts the null with probabilities φ

(
Sβ , Tβ

)
and 1−φ

(
Sβ , Tβ

)
,

respectively; the dependence of φ on Z , β0 and Ω is omitted out
of convenience. For example, a nonrandomized test that rejects
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