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a b s t r a c t

In the present paper, a linear complementarity method for a vehicle-bridge dynamic system considering
separation and random roughness is established. By introducing the linear complementarity relationship
between the relative displacement of the wheels and the bridge at the contact points, the dynamic
interaction problem of the vehicle-bridge coupled system is transformed into a standard linear comple-
mentarity problem, and two models with different connection relations between the wheels and the
bridge are proposed. The presented models characterize the system with one unified formulation
whether the wheels separate from the bridge or not, and the conventional trial-and-error iterative pro-
cess in numerical simulation is avoided. In the numerical examples, the proposed method is verified by
comparing it with the conventional method, and it is found that the velocity, the vehicle to bridge mass
ratio and the road roughness have a significant influence on separation. By considering a vehicle model of
three rigid bodies with four wheels and the randomness of the rail roughness in train–track–bridge
system, the possibility of separation and the expectation of the maximum separation distance at different
velocities are studied. The results show that it is very useful to carry out a stochastic analysis of the
system and consider the influence of separation in vehicle and bridge design.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic behaviour of beam structures, such as railway
bridges, subject to moving loads has been investigated for over a
century since Stokes [1] firstly brought this problem into attention.
It is of great interest in many engineering applications, such as the
design of bridges, railway tracks and cableways, and a large
number of papers related to this problem have been published to
predict the dynamic responses of simple supporting structures
under moving loads [2–8]. The early structural engineers found
that under moving loads, structural dynamic deformations and
stresses can be significantly higher than those caused by
corresponding static loads [2,3]. Frýba [4] described the basic pos-
tulation of moving load problems and their analytical solutions.
Olsson [5] discussed the assumption inherent in the moving force
problem and solved it by the finite element method. In the moving
force problem, the inertial force of the moving structure was

neglected which would possibly miss some aspects of the physics
involved and could not capture the interaction behaviour between
the moving structure and the bridge during the travelling [7]. The
moving mass problem was then suggested, which brings some
improvements to the moving force model. The moving structure
was considered a single mass [9,10] first, and an oscillator model
was then considered which would be more appropriate for some
applications [11–13]. More models with different degrees of com-
plexity are used to represent realistic vehicles [14–16].

As the position of the moving structure changes with time, the
coefficient matrices of the moving mass problem are time-depen-
dent. There are two conventional ways to simulate the time-de-
pendent equations of motion of vehicles-bridge systems. The first
way assumes that the vehicle is in sliding contact with the bridge
and solves the coupled equations of motion for the whole vehicle-
bridge system through numerical integration in time domain,
which requires a very small time step [17]. The other way is based
on the uncoupled iteration method, in which each system (both the
vehicles and the bridge) is solved separately and an iterative pro-
cess in each time step is performed to find the equilibrium
between the bridge and vehicle wheels. By using a proper estimate
of the interaction forces, the accurate solution of the system can be
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obtained for a larger time step [17,18]. The paper adopts the sec-
ond way.

All these papers mentioned above took no consideration of the
possibility of separation between the moving object and the
bridge, although separation was shown to be possible in theory
and studied in some numerical simulations [19–25]. Lee [20] is
perhaps the first researcher to study the separation between the
moving mass and the supporting structure. In that case, the contact
force was time-dependent and became zero under certain circum-
stances. The transition of the moving contact force from positive to
zero was considered to be the onset of separation between the
moving and supporting structures. It is found that the most impor-
tant parameters influencing the separation are the sliding speed
and the mass ratio between the moving mass and the beam [21].
Stăncioiu et al. [22,23] and Baeza and Ouyang [24] studied sep-
aration and reattachment of an oscillator moving along a beam
structure, and put forward a simplified method for computing
the dynamic responses after the impact at reattachment. On the
other hand, the road roughness of the bridge deck is a real physical
phenomenon which almost exists in all bridges. It is found that
road roughness magnifies the dynamic response due to the moving
action of the mass, which would possibly be detrimental to the
safety and serviceability of structures [26–28]. Furthermore, for a
railway bridge, the rail roughness is a random process, which
would increase the possibility of separation and make the
responses harder to predict. Cheng et al. [25] studied separation
considering the surface roughness of the bridge modelled as a con-
tinuous beam, and proposed an algorithm to account for the
impact on the reestablishment of contact. It is found that sep-
aration often occurs in the vicinity of the crests of roughness,
and the velocity has a significant influence on separation.

Many researchers modelled the vehicle as an oscillator, which
has only one wheel, thus only one equation of motion is required
to demonstrate separation. But for a multi-wheel vehicle model,
loss of contact for any wheel of the vehicle changes the time-
dependent matrices by adding a DOF corresponding to the wheel
separating from the bridge. Extra equations of motion are needed
to describe all the possible combinations due to different wheels
separating from the bridge, which makes it too complicated to deal
with.

In this paper, a linear complementarity method [29,30] for vehi-
cle-bridge system considering separation with road roughness is
established. In the present simulation, a unified equation of motion
is constructed to describe the system whether the wheels separate
from the bridge or not. Therefore, the complex trial-and-error
iterative processes in conventional numerical simulation are
avoided (that is, the assumptions or the iterative process for
determination of contact states is not required in the proposed
method). The moving oscillator model with separation is firstly
used to verify the present method by comparing it with the moving
oscillator model with permanent contact. It is found that the road
roughness significantly influences the separation region at various
values of the velocity ratio and the vehicle to bridge mass ratio
considered. The random track irregularity in railway and a multi-
wheel vehicle are considered later. By implementing the Monte
Carlo simulation, the possibility of separation and its influence
on the dynamic responses are studied. Finally, the expectation of
maximum distance of separation is determined, which is suggested
as an indicator of the influence of separation.

2. Equations of motion of vehicle bridge systems and separation

As shown in Fig. 1, a simple beam model for a vehicle bridge is
presented first. The vehicle is modelled as an oscillator with two
degrees of freedom z1 and z2. The sprung mass and the wheel are

connected by a spring-damper, with stiffness k1 and damping c1.
The oscillator is moving along the bridge at a constant velocity V.

The vertical displacement z2 of the sprung mass m2 and the ver-
tical displacement z1 of the wheel m1 are governed by a set of two
equations of motion
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where the overdot stands for the total derivative d=dt and f v is the
interaction force at the wheel, g is gravitational acceleration. Eq. (1)
can be written in matrix form

Mv€zv þ Cv _zv þ Kvzv ¼ FvðtÞ ð2Þ

On the other hand, the equation of motion of a finite element
model of bridge can be written as

Mb €ub þ Cb _ub þ Kbub ¼ FbðtÞ ð3Þ

where Mb; Cb and Kb are the mass matrix, damping matrix and stiff
matrix of the bridge respectively. FbðtÞ is the load vector acting on
the bridge, which can be obtained by

FbðtÞ ¼ �RðtÞf vðtÞ ð4Þ

where R is the influence matrix, which transforms the non-nodal
load into equivalent nodal load, and can be written as

RðtÞ ¼ TNTðnÞ ð5Þ

in which NðnÞ is the shape function vector of the bridge element in
contact with the wheel,

NðnÞ ¼ N1ðnÞ N2ðnÞ N3ðnÞ N4ðnÞ½ �T ð6Þ

where n is the local coordinate of the contact point related to the
wheel’s horizontal location which is changing with time, and

N1 ¼ 1� 3n2 þ 2n3; N2 ¼ lðn� 2n2 þ n3Þ
N3 ¼ 3n2 � 2n3; N4 ¼ lðn3 � n2Þ

ð7Þ

while l is the length of the contact element, T is the position trans-
forming matrix of the element, consisting of 0 and 1. Similarly, the
displacement uc of the bridge-wheel contact point can be obtained
by

ucðtÞ ¼ RTðtÞubðtÞ ð8Þ

By applying the mode superposition method to the bridge, the
displacement of the bridge can be expressed as

ub ¼
Xn

i¼1

ubiqbi ¼ Ubqb ð9Þ

where Ub ¼ ub1 ub2 � � � ubn½ � is the modal matrix of the bridge,

and qb ¼ qb1 qb2 � � � qbn½ �T is the modal displacement vector for
the bridge. Thus the equation of motion of the bridge can be written
as

Mb€qb þ Cb _qb þ Kbqb ¼ Fb ð10Þ

Fig. 1. A simple vehicle–bridge coupled system model.
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