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a b s t r a c t

This paper extends unit root tests based onquantile regression proposed byKoenker andXiao [Koenker, R.,
Xiao, Z., 2004. Unit root quantile autoregression inference, Journal of the American Statistical Association
99, 775–787] to allow stationary covariates and a linear time trend. The limiting distribution of the test
is a convex combination of Dickey–Fuller and standard normal distributions, with weight determined
by the correlation between the equation error and the regression covariates. A simulation experiment is
described, illustrating the finite sample performance of the unit root test for several types of distributions.
The test based on quantile autoregression turns out to be especially advantageous when innovations are
heavy-tailed. An application to the CPI-based real exchange rates using four different countries suggests
that real exchange rates are not constant unit root processes.
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1. Introduction

The unit root hypothesis has important implications for
determining the effects of random shocks on economic variables.
Recently, methods for detecting the presence of a unit root in
semiparametric time series models have attracted interest in
both theory and applications, since one way to increase power
performance is the use of robust estimators, together with the
associated inference apparatus. Such tests are designed to have
a good power for many different error distributions. Thompson
(2004), Koenker andXiao (2004), Hasan (2001), Hasan andKoenker
(1997), Rothenberg and Stock (1997), Herce (1996) and Lucas
(1995) discuss robust estimation and testing in the presence of the
unit root process.
Koenker and Xiao (2004) propose new tests of the unit root hy-

pothesis based on the quantile autoregression (QAR) approach in
an univariate context. Since many empirical applications have no-
toriously heavy-tailed behavior, it is important to consider esti-
mation and inference procedures which are robust to departures
fromGaussian conditions and are applicable to nonstationary time
series. Quantile autoregression methods provide a framework for
robust inference and allow one to explore a range of conditional
quantiles exposing a variety of forms of conditional heterogeneity.
Such models can still deliver important insights about dynamics
and persistency in economic time series, and thus provide a useful
tool in empirical diagnostic time series analysis. Koenker and Xiao
(2004) suggest a t-ratio statistic to test the hypothesis of unit root
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that accounts only for intercept, and without covariates in the es-
timated equation. However, following Nelson and Plosser (1982),
a common motivation for unit root testing is to test the hypothe-
sis that a series is difference stationary against the alternative that
it is trend stationary. Such tests are interesting because, under the
alternative hypothesis of stationarity, time series exhibit trend re-
version characteristics, whereas under the null they do not.
Hansen (1995) proposes a least squares based covariate

augmented Dickey–Fuller (CADF) test, and shows that including
correlated stationary covariates in the regression equation can
lead to a more precise estimate of the autoregressive coefficient
and consequently to large power gains. In this context, Elliott and
Jansson (2003) and Pesavento (2007) propose generalizations of
the CADF test. Therefore, another important extension of Koenker
and Xiao (2004) is the inclusion of at least one covariate when
testing for unit root.
This paper aims to generalize the quantile autoregression

unit root test by introducing stationary covariates and a linear
time trend into the quantile autoregression model. We explore
estimation and inference in a model where there is one series
that potentially has a unit root, and this series potentially co-
varieswith someavailable stationary variable. The findings suggest
that the limiting distribution of the t-ratio statistic based on
quantile regression estimation after adding stationary covariates
and a linear time trend continues to be a combination of
Dickey–Fuller and Normal distributions, with weights determined
by the correlation between the equation error and the regression
covariates. Monte Carlo experiments show that the test based on
covariate quantile autoregression (CQAR) turns out to be especially
advantageous when innovations are non-Gaussian heavy-tailed.
In particular, the results show that the quantile autoregression
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test proposed in this paper presents power gains relative to the
QAR test proposed by Koenker and Xiao (2004) when there is an
available stationary covariate and it is included in the estimated
model. In addition, in the non-Gaussian heavy-tailed distribution
case, the CQAR unit root test presents more power than the CADF
test. Finally, we illustrate the test with an application to the CPI-
based real exchange rates using four different countries: Canada,
Japan, Switzerland and the United Kingdom. The results indicate
that real exchange rates are not constant unit root processes.
The paper is organized as follows. In Section 2, we introduce

the model and estimation. Section 3 presents the test and its
asymptotic behavior, and in Section 4 we conduct a Monte Carlo
experiment to study the performance of the estimator in finite
sample. In Section 5 we apply the test to the CPI-based real
exchange rates. Finally, Section 6 concludes the paper.

2. Quantile autoregression

2.1. The model and assumptions

The univariate series yt consists of a deterministic and
stochastic component
yt = dt + St , (1)
for t = 1, . . . , n, where the deterministic component can be:
dt = 0, dt = µ1, or dt = µ1 + µ2t . The stochastic component
St is modeled as
a(L)1St = δSt−1 + et , (2)
where1 is the usual difference operator, a(L) = 1− a1L− a2L2 −
· · · − apLp is a pth order polynomial in the lag operator, and

et = b(L)′xt + ut , (3)
where xt is a mean zero v-vector, and b(L) = bq2L

−q2+· · ·+bq1L
q1

is a lag polynomial allowing for both leads and lags of xt to enter
the equation for et . So, we let the innovations (et ) in the model
be serially correlated, and also allow them to be related to other
stationary covariates. We wish to test the unit root hypothesis
δ = 0 versus the alternative δ < 0.
Assumptions: for some p > r > 2
A1. {ut , xt} is covariance stationary and strongmixingwithmixing
coefficients αm, which satisfies

∑
∞

m=1 α
1/r−1/p
m <∞;

A2. supt E[|xt |p + |ut |p] <∞;
A3. E[xt−kut ] = 0 for q1 ≤ k ≤ q2;
A4. E[utut−k] = 0 for k ≥ 1;
A5. E(φtφ′t) > 0, where φt = (1yt−1, . . . ,1yt−q, xt−q2 , . . . ,
xt+q1)

′
;

A6. the roots of a(L) all lie outside the unit circle;
A7. the distribution function of ut , F , has differentiable continuous
Lebesgue density, 0 < f (u) <∞, with bounded derivatives f ′
on {u : 0 < F(u) < 1}.

Assumptions A1–A6 are the same as in Hansen (1995).
A1 and A2 state weak dependence and moment restrictions.
Assumptions A3 and A4 exclude linear dependence. Assumption
6 is a typical stationarity assumption. Finally, assumption A7 is a
standard assumption in quantile regression literature and imposes
restriction on the density function of ut .

2.2. Estimation

Estimation and testing are based on the following linear
model1:

1 When dt = µ1 + µ2t the model (1)–(3) can be written as a(L)1yt = µ∗1 +

µ∗2t + δyt−1 + b(L)xt + ut , where µ
∗

1 = a(1)µ2 − δµ1 and µ
∗

2 = −δµ2 . Since we
have interest only in the autoregression coefficient, we omit the superscript.

yt = µ1 + µ2t + αyt−1 +
p∑
j=1

αj1yt−j +
q2∑

l=−q1

γlxt−l + ut . (4)

The model may thus be written as

Qyt (τ |=t−1) = µ1 + µ2t + αyt−1 +
p∑
j=1

αj1yt−j

+

q2∑
l=−q1

γlxt−l + F−1u (τ )

where Qyt denotes the τ -th conditional quantile of yt conditional
on =t−1, where =t−1 is the σ -field generated by {us, s <
t, xt−q2 , . . . , xt+q1}. The Fu denotes the common distribution
function of the errors. Let µ1(τ ) = µ1 + F−1u (τ ), and define

zt = (1, t, yt−1,1yt−1, . . . ,1yt−p, xt−q2 , . . . , xt+q1)
′

and β(τ) = (µ1(τ ), µ2, α, α1, . . . , αp, γq1 , . . . , γ−q2)
′,

thus, we have

Qyt (τ |=t−1) = z
′

tβ(τ). (5)

Estimation of the linear quantile autoregressionmodel involves
solving the problem

min
β∈R3+p+q

n∑
t=1

ρτ
(
yt − z ′tβ

)
, (6)

where ρτ (u) = u(τ − I(u < 0)) as in Koenker and Bassett
(1978). We shall be concerned with the limiting distribution of
the coefficients in (6), more specifically with α̂(τ ) and its t-ratio
statistic under the hypothesis of unit root. Thus under the null
hypothesis α(τ) = 1.

2.3. QAR asymptotics under unit root hypothesis

In this section we describe the limiting distribution of the
quantile autoregression process under the unit root hypothesis,
where the observations {yt}nt=1 come from the data generating
process as (1)–(3) with dt = µ1 + µ2t .2 First, in order to derive
the asymptotic properties of α̂, and without loss of generality, we
use a convenient reparametrization of the objective function, by
applying the quantile equivariance property. Further, we derive
the asymptotic distribution of α̂.
Consider the estimator α̂ which solves

min
β∈R3+p+q

n∑
t=1

ρτ

(
yt − µ1 − µ2t − αyt−1 −

p∑
j=1

αj1yt−j −
q2∑

l=−q1

γlxt−l

)
. (7)

Define ỹt = yt−µ1−µ2t . According to the equivariance property,
Theorem 3.2 part 4 in Koenker and Bassett (1978), β̃(τ , y, XA) =
A−1β̃(τ , y, X), hence solving (7) is equivalent to

min
β∈R3+p+q

n∑
t=1

ρτ

yt − η − θ t − αỹt−1 − p∑
j=1

αj1yt−j −
q2∑

l=−q1

γlxt−l

 , (8)
whereη = µ1+α(µ2−µ1), θ = µ2+αµ2, and ỹt−1 = yt−1−µ1−
µ2(t−1). Therefore, α̂ which solves theminimization problem (7)
also solves the minimization problem (8) and we can describe the
asymptotic properties of α̂ based on the latter equation. Thus, let

z̃t = (1, t, ỹt−1,1yt−1, . . . ,1yt−p, xt−q2 , . . . , xt+q1)
′ (9)

and β(τ) = (η, θ, α, α1, . . . , αp, γq1 , . . . , γ−q2)
′.

2 All results may be extended to the model generated by dt = µ1 or dt = 0.
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