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a b s t r a c t

A time-varying quantile can be fitted by formulating a time seriesmodel for the corresponding population
quantile and iteratively applying a suitably modified state space signal extraction algorithm. It is shown
that such quantiles satisfy the defining property of fixed quantiles in having the appropriate number
of observations above and below. Like quantiles, time-varying expectiles can be estimated by a state
space signal extraction algorithm and they satisfy properties that generalize the moment conditions
associatedwith fixed expectiles. Because the state space form can handle irregularly spaced observations,
the proposed algorithms can be adapted to provide a viable means of computing spline-based non-
parametric quantile and expectile regressions.
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1. Introduction

The movements in a time series may be described by time-
varying quantiles. These may be estimated non-parametrically by
fitting a simple moving average or a more elaborate kernel. An
alternative approach is to formulate a partial model, the role of
which is to focus attention on some particular feature – here a
quantile – so as to provide a (usually nonlinear) weighting of the
observations that will extract that feature by taking account of
the dynamic properties of the series. The model is not intended
to be taken as a full description of the distribution of the
observations. Indeed models for different features, for example
different quantiles, may not be consistent with each other.
In an earlier paper, we showed how time-varying quantiles

could be fitted to a sequence of observations by setting up a state
space model and iteratively applying a suitably modified signal
extraction algorithm; see De Rossi and Harvey (2006). Here we
determine the conditions under which such quantiles will satisfy
the defining property of fixed quantiles in having the appropriate
number of observations above and below.
Expectiles are similar to quantiles except that they are defined

by tail expectations; see Newey and Powell (1987). Here we show
how time-varying expectiles can be estimated by a state space
signal extraction algorithm. This is similar to the algorithm used
for quantiles, but estimation is more straightforward and much
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quicker. We then show that the conditions needed for a time-
varying expectile to generalize the moment conditions associated
with fixed expectiles are similar to those needed for a time-varying
quantile to satisfy the defining property of fixed quantiles.
Section 2 reviews the ideas underlying fixed quantiles and ex-

pectiles. Section 3 then describes the signal extraction algorithms
for estimating them when they are time-varying and establishes
some basic properties. The final part of the paper is concernedwith
non-parametric estimation of regression models using splines. It
has long been known that cubic splines can be fitted by signal ex-
traction procedures because the state space form can handle ir-
regularly spaced observations from a continuous time model. The
proposed algorithms for time-varying quantiles and expectiles are
easily adapted so as to provide a viablemeans of computing spline-
based non-parametric quantile and expectile regressions. As well
as illustrating the technique, we give a general proof of the equiva-
lence between splines and the continuous timemodels underlying
our signal extraction procedures for quantiles and expectiles.

2. Quantiles and expectiles

Let ξ(τ ) – or, when there is no risk of confusion, ξ – denote
the τ th-quantile. The probability that an observation is less than
ξ(τ ) is τ , where 0 < τ < 1. Given a set of T observations,
yt , t = 1, . . . , T , (which may be from a cross-section or a time
series), the sample quantile, ξ̃ (τ ), can be obtained by sorting the
observations in ascending order. However, it is also given as the
solution to minimizing

Sτ =
T∑
t=1

ρτ (yt − ξ) =
∑
yt<ξ

(τ − 1)(yt − ξ)+
∑
yt≥ξ

τ(yt − ξ) (1)
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with respect to ξ , where ρτ (.) is the check function, defined for
quantiles as

ρτ (yt − ξ) = (τ − I(yt − ξ < 0)) (yt − ξ) (2)

and I(.) is the indicator function.
Expectiles, denoted µ(ω), 0 < ω < 1, are similar to quantiles

but they are determined by tail expectations rather than tail
probabilities. For a given value of ω, the sample expectile, µ̃(ω),
is obtained by minimizing the asymmetric least squares function,

Sω =
∑

ρω(yt − µ) =
∑
|ω − I(yt − µ < 0)| (yt − µ)2, (3)

with respect to µ. Differentiating Sω and dividing by minus two
gives

T∑
t=1

|ω − I(yt − µ < 0)| (yt − µ). (4)

The sample expectile, µ̃(ω), is the value of µ that makes (4) equal
to zero. Setting ω = 0.5 gives the mean, that is µ̃(0.5) = y. For
other ω’s it is necessary to iterate.

3. Signal extraction

A framework for estimating time-varying quantiles, ξt(τ ), can
be set up by assuming that they are generated by stochastic
processes and are connected to the observations through a
measurement equation

yt = ξt(τ )+ εt(τ ), t = 1, . . . , T , (5)

where Pr(εt(τ ) < 0) = τ with 0 < τ < 1. The disturbances,
εt(τ ), are assumed to be serially independent and independent of
ξt(τ ). The problem is then one of signal extraction. The assumption
that the quantile or expectile follows a stochastic process can
be regarded as a device for inducing local weighting of the
observations. One possibility is a random walk,

ξt(τ ) = ξt−1(τ )+ ηt(τ ), ηt(τ ) v IID(0, σ 2η(τ)). (6)

A smoother quantile can be extracted by a local linear trend

ξt = ξt−1 + βt−1 + ηt (7)
βt = βt−1 + ζt

where βt is the slope and ζt is IID(0, σ 2ζ ). It is well known that in
a Gaussian model setting Var(ηt) = σ 2ζ /3 and Cov(ηt , ζt) = σ

2
ζ /2

results in the smoothed estimates being a cubic spline.
The model for expectiles is set up in a similar way with (5)

replaced by yt = µt(ω) + εt(ω) where the ω-expectile of εt(ω)
is equal to zero.

3.1. Theory and computation

The state space form (SSF) for a univariate time series is:

yt = z′tαt + εt , Var(εt) = σ 2t , t = 1, . . . , T (8)
αt = Ttαt−1 + ηt , Var(ηt) = Qt
whereαt is anm×1 state vector, zt is a non-stochasticm×1 vector,
σ 2t is a non-negative scalar, Tt is anm×m non-stochastic transition
matrix and Qt is an m × m covariance matrix. The specification
is completed by assuming that α1 has mean a1|0 and covariance
matrix P1|0 and that the serially independent disturbances εt and
ηt are independent of each other and of the initial state.
Consider the criterion function

J = −
T∑
t=1

h−1t ρ(yt − z′tαt)−
1
2

T∑
t=2

(αt − Ttαt−1)′

×Q−1t (αt − Ttαt−1)−
1
2
(α1 − a1|0)′P−11|0(α1 − a1|0), (9)

where ρ(yt − z′tαt) is as in (2) or (3), with z′tαt equal to ξt(τ )
or µt(ω),Qt and P1|0 are are assumed positive definite matrices
as in (8) and ht is a non-stochastic sequence of positive scalars.
For example, in the local linear trend case (7) αt = (ξt , βt)

′ and
z′ = (1, 0), while T is upper triangular with nonzero elements
equal to one. Suppose that the initial state and the η′ts are normally
distributed. For a Gaussian model of the form (8) the logarithm
of the joint density of the observations and the states is, ignoring
irrelevant terms, given by J withρ(yt−z′tαt) = (yt−µt(0.5))

2 and
ht = 2σ 2t . Differentiating J with respect to to each element of αt
gives a set of equations, which, when set to zero and solved, gives
the minimum mean square error estimates of αt . These may be
computed efficiently by the Kalman filter and associated smoother
(KFS) as described in Durbin and Koopman (2001, pp. 70–73). If
all the elements in the state are nonstationary and given a diffuse
prior, the last term in J disappears. An algorithm is available as a
subroutine in the SsfPack set of programs within Ox; see Koopman
et al. (1999).
We can think of (9) as a criterion function that provides the basis

for computing a quantile or expectile subject to a set of constraints
imposed by the time series model for the quantile or expectile. 1
For expectiles differentiating J gives

∂ J
∂α1
= z1(2/h1)IE(y1 − z′1α1)

− P−11|0(α1 − a1|0)+ T′2Q
−1
2 (α2 − T2α1)

∂ J
∂αt
= zt(2/ht)IE(yt − z′tαt)− Q−1t (αt − Ttαt−1)

+ T′t+1Q
−1
t+1 (αt+1 − Tt+1αt) , t = 2, . . . , T − 1,

∂ J
∂αT
= zT (2/hT )IE(yT − z′TαT )− Q−1T (αT − TTαT−1) (10)

where

IE(yt − µt (ω)) = |ω − I(yt − µt(ω) < 0)| (yt − µt (ω)),
t = 1, . . . , T . (11)

The smoothed estimates, α̃t , satisfy the equations obtained by
setting these derivatives equal to zero. Let ht = gt/κ , where κ is a
constant, the interpretation of which will become apparent in sub-
Section 3.3. For any expectile, adding and subtracting ztg−1t z′tαt to
the equations in (10) allows the first term to be written as

ztg−1t [z
′

tαt + 2κ IE
(
yt − z′tαt

)
] − ztg−1t z′tαt ,

t = 1, . . . , T . (12)

This suggests that we set up an iterative procedure in which the
estimate of the state at the i-th iteration, α̂(i)t , is computed from
the KFS applied to a set of synthetic ‘observations’ constructed as

ŷ(i−1)t = z′t α̂
(i−1)
t + 2κ IE

(
yt − z′t α̂

(i−1)
t

)
. (13)

The iterations are carried out until the α̂
(i)′
t s converge whereupon

µ̃t(ω) = z′t α̃t .
For quantiles, the first term in each of the three equations of

(10) is replaced by zth−1t IQ (yt − z′tαt), where

IQ (yt − ξt(τ )) =
{
τ − 1, if yt < ξt(τ )
τ , if yt > ξt(τ )

t = 1, . . . , T , (14)

1 It could also be regarded as the log of the joint density of a model where the
measurement error is an asymmetric double exponential (quantile) or asymmetric
normal (expectile). But such a model could not be taken seriously as a data
generating process.
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