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a b s t r a c t

In this article, an efficient numerical approach is proposed to study the vibration of two-dimensional
periodic structures. The method combines the advantages of mode-based Component Mode Synthesis
(CMS) and wave-based Wave Finite Element Method (WFEM). It begins with a modal description of a
mesoscopic unit cell using CMS. Subsequently, WFEM is applied to the macroscopic structure, which is
considered as a waveguide. It exploits fully the periodic propriety of the structure since only one unit cell
needs to be modelled. The introduction of CMS is able to reveal the influence of local dynamics of unit cell
on the global behaviour of the structure, and speed up the computation of eigen-problem. The
wave-mode duality is discussed which assures the combination of the two methods. The effectiveness
of the proposed approach is illustrated via an example of two-dimensional beam grid. The convergence
criteria of the model reduction is given and the equivalence of cell modes and stationary waves at
bounding frequencies of stop bands is verified.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Two-dimensional (2D) periodic structures that can be obtained
by repeating a single unit cell are widely employed in various engi-
neering domains. Their applications spread from the sandwich
panels, stiffened plates, truss beams used in aerospace and marine
structures, to the perforated plate used in the tube sheet heat
exchangers in nuclear power plants. The wide application and rich
dynamic behaviours of periodic structures have attracted lots of
researchers for several decades [1–5].

Numerous wave-based methods have been developed during
the study or design of homogeneous or periodic structure. The
Semi-Analytical Finite Element (SAFE) and Wave Finite Element
Method (WFEM) are two efficient tools to study these structures.
In the SAFE method, the displacement field is formulated following
decomposition into plane waves in the direction of propagation,
and using finite elements in the direction perpendicular to prop-
agation one. The numerical method – WFEM has been developed
to overcome the limitations of analytical model in SAFE by combin-
ing the periodic structures theory with FEM. It has been exten-
sively applied to study the propagation in homogeneous or
periodic waveguides in last decades [3,6–8]. The method is based

on periodic structures theory [9,10], converting the study of the
whole periodic structure into a single unit cell. Free harmonic wave
motion can be deduced from the dynamic stiffness matrix of the
unit cell. The obtained wave motion corresponds to the wave basis.
All waves propagating (free or forced) in this structure can be
decomposed into this wave basis. However, for waveguides with
complex cross-section, computation based on wave basis may be
time-consuming. So several reduction formulations of WFEM have
been proposed. Droz et al. have proposed a reduction formulation
to determine the propagating wave in 1D refined model of a lami-
nated composite beam [11]. The main idea is to use the wave basis
at cut-on frequencies to describe the wave basis in the whole fre-
quency range. Then the spectral problem on the dynamic stiffness
matrix of unit cell is expressed by reduced wave coordinates.
Similarly, a reduced wave basis expansion method has been pro-
posed by Hussein for fast calculation of band structure in 2D peri-
odic structures [12]. However, instead of forming the reduced
wave basis using the waves basis at cut-on frequencies, the eigen-
vectors corresponding to a selected wavenumbers are employed.
Mencik et al. have proposed a reduction technique by selecting
the wave modes that are relevant for computing the forced
response of elastic waveguides. However, the numerical costs for
computation of the wave basis are not reduced [13]. Mead has pre-
sented a reduced method by identifying, in a preliminary inves-
tigation, the characteristic waves which contribute to the motion
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of the structure. Then the computation time to calculate the wave
basis as well as the forced response of the structure is reduced [14].

The aforementioned reduction techniques are interesting to
study waveguides with complex cross-section with a large number
of coupling coordinates. But few reduction method is developed to
deal with the periodic structures with numerous internal DOFs in
the unit cell, which may also lead to excessive computational time.
In this paper, a mode-based a priori reduction method is coupled
with WFEM. The reduced model of the unit cell is computed based
on Craig–Bampton method, the fixed boundary Component Mode
Synthesis (CMS) method [15]. The numerous physical internal
coordinates of the unit cell are represented by a reduced set of
modal coordinates, while the physical coupling coordinates are
conserved. The reduction is robust and easy to implement to
WFEM formulation. The reduced model is valid in all the frequency
range of interest, while the aforementioned wave-based reductions
depend on the band of frequency studied. In addition, the selection
of the modal basis allows us to study the influence of local dynam-
ics on the global behaviours. The proposed method combines the
modal description of vibration on unit cell scale and wave descrip-
tion on the whole structure. The equivalence of two descriptions is
known as ‘‘wave-mode duality’’ [16]. More details about the
advantage of this combination can be found in Section 2.

As for periodic structures, an interesting dynamic behaviour is
stop bands (called also band gaps) and directivity of propagation.
A lot of work has been done in the study of stop bands, for example
to maximise stop bands or to localise stop bands in certain fre-
quency regions [17–19]. The proposed method can be used to pre-
dict the stop bands, and also to study the wave shapes at the
bounding frequencies of the stop bands. According to Mead [20],
the bounding frequencies of the stop bands correspond to natural
frequencies of the unit cell under appropriate boundary conditions.
On the numerical example of a beam grid, the bounding frequen-
cies and associated wave shapes are compared with natural fre-
quencies and modes shapes.

In this work, general formulations for modelling periodic struc-
tures using a combined mode/wave approach are proposed. On the
whole, the paper focuses on two main objectives:

1. Offering efficient numerical tools for the predictions of wave
propagation characteristics, to study the influences of local
dynamics on global behaviours, and minimise computational
cost.

2. Discussing some aspect of the wave-mode duality of the struc-
ture vibration. Analysing equivalence of the cell modes and sta-
tionary wave at bounding frequencies of stop band.

The paper is organised as follows: in Section 2, the modal
description and wave description of vibration are explained briefly.
The terminology concerning wave description is defined to avoid
ambiguity. The advantages of the proposed approach are described.
In Section 3, the proposed method is developed in detail. Different
representations of the results are explained as well in this section.
Subsequently, a numerical example of a beam grid is fully pre-
sented in Section 4. The effectiveness of the proposed method is
illustrated and the wave beaming effect is studied. The wave-mode
duality at bounding frequencies of stop band is discussed. Finally,
conclusions and perspectives of this paper are presented in
Section 5.

2. Terminology: wave-mode duality, macroscopic and
mesoscopic scales

It is well known that the response of a vibrating system can be
viewed either in terms of modes or in terms of elastic wave motion,

known as ‘‘wave-mode duality’’. Plenty of discussions regarding
the relationship between the wave and the modal descriptions
can be found [16,21]. For 1D waveguide, the wave-mode duality
is demonstrated in a mathematical sense. The vibration can be
written both as a sum of right- and left-going components and a
sum of participation of all the modes under the same boundary
conditions. However for 2D structure, the duality has not been
proved precisely due to ill-conditioning problem in numerical
computation [16].

The structure studied in this paper is called ‘‘two-dimensional
periodic’’, which means that it is periodic in two directions, for
example x and y direction. The property can vary in the 3rd direc-
tion, the z direction. An illustration of two-dimensional periodic
structure is given in Fig. 1. Such structure could be a stiffened plate
in fuselage or a honeycomb sandwich. Different scales related to
multi-scale modelling of 2D periodic structure in this paper is
defined as follows:

Macroscopic scale: The whole periodic structure, as shown in
Fig. 1a. It can be infinite or finite with a large number of unit cells.

Mesoscopic scale: The unit cell of the structure, as shown in
Fig. 1b. By repeating this unit cell in x and y directions, one can
obtain the whole periodic structure.

In this paper, the proposed method employs the modal descrip-
tion of vibration on the mesoscopic scale of unit cell, and the wave
description is used on the macroscopic scale of periodic structure.

2.1. Analysis of periodic structure using modal approach – Component
Mode Synthesis

Component Mode Synthesis (CMS) is an efficient mode-based
method to study periodic structures [15]. CMS enables structures
to be analysed as a set of components, which form the whole struc-
ture when joined together. It has many advantages, such as allow-
ing analysis to proceed independently on each component, and
making each analysis smaller. One of the most common methods
is Craig–Bampton method. To build the component (unit cell)
model, we use a reduced basis of fixed boundary modes WC.
Constraint static modes of the component interfaces Wbd are also
introduced. The modal basis Ws of the structure can be deduced
by assembling all the components, after expanding the reduced
modal coordinates to the physical coordinates. Subsequently, the
physical displacement q is related to the modal displacement g
using the following equation:

qð~r;xÞ ¼
Xn

i¼1

giðx;x0iÞws

i
ð~r;x0iÞ ð1Þ

where~r represents the physical coordinates. ‘‘Modes shapes’’ ws

i
are

associated with natural frequency x0i, which form a ‘‘structural
modal basis’’ Ws ¼ ws

1
;ws

2
. . . ;ws

n

� �
. In this paper, the modes (cell

modes and structural modes) shapes are represented by wi,
whereas wave shapes are represented by /i in wave description.

2.2. Analysis of periodic structure using wave approach – Wave Finite
Element Method

In the wave description, the displacement field (free or forced)
of structure is regarded as a sum of harmonic waves:

qð~r;xÞ ¼
Xn

i¼1

aiðx; ~x1; kiÞ/iðx; ~x2; kiÞ ð2Þ

where x is the frequency of the propagating wave. Physical coordi-
nates~r are divided into ð~x1; ~x2Þ, with ~x1 representing coordinates in
the propagation direction and ~x2 representing the local coordinates
in the unit cell. Instead of the standard FEM where the whole
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