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a b s t r a c t

This paper considers the specification and estimation of social interactionmodelswith network structures
and the presence of endogenous, contextual, correlated, and group fixed effects. When the network
structure in a group is captured by a graph in which the degrees of nodes are not all equal, the different
positions of groupmembers asmeasured by theBonacich (1987) centrality provide additional information
for identification and estimation. In this case, the Bonacich centrality measure for each group can be used
as an instrument for the endogenous social effect, but the number of such instruments grows with the
number of groups.We consider the 2SLS and GMMestimation for themodel. The proposed estimators are
asymptotically efficient, respectively, within the class of IV estimators and the class of GMM estimators
based on linear and quadratic moments, when the sample size grows fast enough relative to the number
of instruments.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

This paper studies social interaction models with network
structures. The model considered has the specification of a spa-
tial autoregressive (SAR) model but has features and implications
directly relevant to social interaction issues. With such a specifi-
cation, the information on network structures is usually summa-
rized in the spatial weights matrix, also known as the sociomatrix
(or adjacency matrix), in social interaction models.
A general social interaction model not only allows possible

endogenous interactions, but also exogenous interactions, unob-
served group effects, and correlation of unobservables. Identifica-
tion of the endogenous interaction effect from the other effects is a
major interest in social interactionmodels (see, e.g., Manski, 1993;
Moffitt, 2001). Linear regression models with endogenous interac-
tion based on rational expectations of the group behavior would
suffer from the ‘reflection problem’ of Manski (1993), and the vari-
ous interaction effects cannot be separately identified. Lee (2007b)
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considers a group settingwhere an individual is equally influenced
by all the other members in the group and the average outcome of
peers represents the source of the endogenous effect. Lee’s (2007b)
social interaction model is identifiable only if there is variation in
group sizes in the sample. The reason for the possible identifica-
tion is that individuals in a small group will have stronger endoge-
nous interactions than those in a larger group. The identification,
however, can be weak if all of the groups have large sizes, even
if there is group size variation. The sociomatrix in Lee’s (2007b)
model has zero diagonal and all of its off-diagonal entries take the
value of 1

m−1 , where m is the group size. Such a sociomatrix rep-
resents a rather restrictive network structure, but may be practi-
cal when there is no information on how individuals interact with
each other.
In some data sets, one may have information on network

structures. Based on a specific network structure, the (i, j) entry
of the sociomatrix is one if i is influenced by j, and zero otherwise.
The corresponding sociomatrix represents a directed graph with a
directed edge leading from j to i if j affects i.1 Such a directed-graph
sociomatrix has been considered in Lee et al. (2010), where it is
row-normalized such that each row sums to unity. For SARmodels
in empirical studies, row-normalized spatial weights matrices are

1 Note that the influence may or may not be reciprocal, so the sociomatrix could
be asymmetric.
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typical with a few exceptions,2 because the spatial effect can be
interpreted as a (weighted) average of neighborhood effects. The
social interaction models based on expected groupmeans in Brock
and Durlauf (2001) andManski (1993), and the one in Lee (2007b),
all have the endogenous effect being an average of peers’ outcomes.
The row-normalized sociomatrix in Lee et al. (2010) has some

limitations. First, it implicitly rules out the possibility that an
individual’s outcome might affect peers’ outcomes but he/she
might not be affected by peers.3 In addition, for social interaction
studies, one may be interested in the aggregate influence of an
individual’s peers instead of the average influence. One may also
be interested in how an individual’s position in a network would
influence peers’ behavior. Notions such as prestige and centrality
have received attention in network studies (Wasserman and Faust,
1994). When the social interaction is specified as a SAR model,
the measure of centrality in Bonacich (1987) comes out naturally
in the reduced form equation. If the sociomatrix represents the
directed graph mentioned above, the sum of the ith row is the
indegrees (the number of inward directed edges) of the node i
in the graph. All group members (nodes) would have the same
level of centrality by the Bonacich measure if and only if the
indegrees of all nodes are equal. Thus, if the indegrees have
a non-zero variation, so does the Bonacich centrality measure
for the group members. The variation in the Bonacich centrality
measure helps to identify the various interaction effects. Yet,
row-normalization would eliminate the variation in the Bonacich
centrality measure. So, for social network studies, sometimes a
sociomatrix without row-normalization would be appropriate. In
this paper, we study the identification and estimation of network
effects without requiring row-normalization of the sociomatrix.
Similar to the model in Lee et al. (2010), the social interaction

model in this paper has the specification of a SAR model and
incorporates endogenous, exogenous, correlated, and unobserved
group effects. The unobserved group effect is captured by a group
dummy variable, which is allowed to have a conditional mean
that depends on the exogenous variables and/or the sociomatrices
(due to self-selection), and so it is treated as a fixed effect. With
many groups in the sample, the group dummies may induce the
incidental parameter problem as in Neyman and Scott (1948).
Based on a transformed model that has the group dummies
eliminated, Lee et al. (2010) has generalized the ML estimation
approach in Lee (2007b) to the network model with a sociomatrix
having constant row sums (including the special case of a
row-normalized sociomatrix).4 However, when the sociomatrix
does not have constant row sums, the likelihood function for
the transformed model could not be derived, and alternative
estimation approaches need to be considered.
This paper considers the 2SLS and generalized method of

moments (GMM) estimation approaches. The 2SLS approach has
been proposed for the estimation of SAR models in Kelejian and
Prucha (1998). The GMM method has been considered for the
estimation of a spatial process in Kelejian and Prucha (1999), and
SAR models in Lee (2007c) and Lee and Liu (2010). The 2SLS and
GMM approaches can be generalized for the estimation of social

2 Anexception is argued in Bell andBockstael (2000) for real estate problemswith
micro-level data. Kelejian and Robinson (1995) has argued that the parameter space
should be free except some singularity points for the spatial matrix—and discussed
not-row-normalized spatial matrices. More recently, Kelejian and Prucha (2007)
consider implications on the parameter space of the SAR model when the spatial
matrix is not row-normalized.
3 In this case, the corresponding row in the sociomatrix will have all zeros and
cannot be normalized to sum to unity.
4 The resulting likelihood function can be shown to be a partial likelihood
function under normal disturbances. The notion of partial likelihood is introduced
in Cox (1975); see also Lancaster (2000).

network models. When the sociomatrix is not row-normalized
and the indegrees of its nodes are not all equal, the Bonacich
centrality measure for each group can be used as an additional IV
to improve estimation efficiency. The number of such instruments
depends on the number of groups. If the number of groups grows
with the sample size, so does the number of IVs. We show that
the proposed 2SLS and GMM estimators can be consistent and
asymptotically normal, and they can be efficient when the sample
size grows fast enough relative to the number of instruments. We
also suggest bias-correction procedures for both estimators based
on the estimated leading order many-instrument biases.
Since Bekker’s (1994) seminal work, the study of many-

instrument asymptotics, where the number of instruments
increases with the sample size, has attracted a lot of attention in
the IV estimation literature. Some recent developments in this area
include Anderson et al. (2007), Donald and Newey (2001), Hansen
et al. (2008) and van Hasselt (2010), to name a few. In particular,
Bekker and van der Ploeg (2005) has considered IV estimation of a
model where group indicators are used as (dummy) instruments
and the number of groups goes to infinity. In this paper, we
also consider many-group asymptotics, where the number of
instruments depends on the number of groups. However, the
instruments based centrality measures are not dummy variables.
Our model also relaxes the i.i.d. assumption for observations
within a group in Bekker and van der Ploeg (2005) by allowing
for possible spatial (or social) correlation among group members.
Similar to Donald and Newey (2001), we focus on the case where
the number of instruments grows with, but at a slower rate than,
the sample size.5 Another important direction of research in the IV
estimation literature is onweak instruments orweak identification
(see, e.g., Chao and Swanson, 2005, 2007). In this paper, we
assume the concentration parameter grows at the same rate as the
sample size.6 Hence, we restrict our attention to scenarios where
instruments are stronger than assumed in the weak-instrument
literature.
The rest of the paper is organized as follows. Section 2 presents

the network model and suggests a transformation of the model to
eliminate group fixed effects. Sections 3 and 4 propose the 2SLS
and GMM approaches for the estimation of the model. We prove
consistency of the proposed estimators, derive the asymptotic
distributions, and suggest bias correction procedures for themany-
instrument bias. The detailed proofs are given in Appendix C.
Monte Carlo evidence on the small sample performance of the
proposed estimators is given in Section 5. Section 6 briefly
concludes.

2. The network model with group fixed effects

The model considered has the specification

Yr = λ0WrYr + X1rβ01 +WrX2rβ02 + lmrα0r + ur , (1)

and ur = ρ0Mrur + εr , for r = 1, . . . , r̄ , where r̄ is the total
number of groups in the sample, mr is the number of individuals

5 Under the asymptotic sequence that the number of instruments increases at
the same rate as the same size, the asymptotic distribution of IV-based estimators
has been established by Bekker (1994), Bekker and van der Ploeg (2005), Hansen
et al. (2008) and van Hasselt (2010). However, their CLTs assume independent
observations andmight not be easy tomodify for the casewith (spatially) correlated
observations without imposing strong regularity conditions.
6 This condition on the concentration parameter is implied by Assumption 4
in Section 3. The assumption of independent observations is omnipresent in the
literature of weak instruments. This model allows the observations within a group
to be correlated. The analysis of asymptotic properties of IV estimators in the
presence of weak instruments in a model with correlated observations is a difficult
problem, which is beyond the scope of this paper.
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