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a b s t r a c t

The use of bending as self forming process allows the realization of shape-resistant systems, such as grid
shell structures. Here, a numerical method for optimization of the cross-section of actively bent struc-
tures is introduced. For a given load distribution, the optimization objective consists of normalizing
the bending stresses to a given value on the entire structure. In addition, strength and geometric compati-
bility constraints are taken into account. The method is demonstrated by numerical examples. Further, in
order to handle the large displacements involved, a co-rotational Finite Element formulation is adopted
and modified to take into account the changes in stiffness that occur in the forming process of active
bending systems. The modified co-rotational formulation is solved for static equilibrium using a
Dynamic Relaxation scheme, and is tested against the analytical solutions of some preliminary test cases,
as well as experimental results, and shown to be ‘accurate’.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The term ‘Active Bending’ defines a category of structural sys-
tems in which bending is used as a self-forming process [1]. For
instance, the realization of grid shell systems obtained by assem-
bling an initially flat mat made of continuous elastic rods (e.g. fiber
reinforced polymers [2] or timber [3–8] and successive forming by
means of adjustable scaffolding or temporary crane-cable systems.
Shell systems derive their strength and stiffness from their inher-
ent doubly curved shape, allowing them to work mainly in mem-
brane action under the effect of external loads. Nevertheless, a
certain amount of out-of-plane stiffness is required to resist inex-
tentional deformations [9].

The double-layer technique, first adopted in the design of the
Mannheim timber grid shell for the Garden Festival [3] allows tigh-
ter curvatures to be obtained compared to a single-layer mat made
from rods with equivalent cross-sectional area. Once the forming
process is complete, sliding between overlapping laths is con-
strained by inserting shear blocks in between the laths making
up the single rib (see Fig. 1) thus enhancing the out-of-plane bend-
ing stiffness of the equivalent continuous shell.

The shape of such (actively bent) grid shell systems can be mod-
eled by performing a preliminary simulation of the forming pro-
cess by means of non-linear finite element procedures. Thus the
resulting geometry can then be used as a basis for further struc-
tural analyses. Nevertheless, the effect of residual pre-stress forces
on the overall structural behavior, as well as the change in stiffness
due to the presence of shear blocks, needs to be taken into account
when assessing the actual load-carrying capacity of the structure.

A comprehensive numerical procedure is introduced here to
solve the initial form finding phase, the construction process sim-
ulation and successive load calculations of such actively bent grid
shell systems. A modified co-rotational beam element with six
degrees of freedom (DoF), in conjunction with the Dynamic
Relaxation method (DR), allows the change in stiffness of the
post-formed mat to be taken into account whilst, maintaining
the resulting equilibrium configuration of the double-layer mat
with sliding connections. Consequently, an optimization method
for deriving the double-layer cross-section is proposed. For a given
load configuration, the iterative method allows the bending stress
ratios to be ‘consolidated’, resulting in a grid shell geometry with
members having variable cross-section. Practical issues, rising
from the fact of having a different cross-section for each member,
can be handled by post-rationalizing members into groups, or pro-
viding fabrication’s methods that allow to ‘accurately’ reproduce
the linear variation of each member’s profile. Further discussion
about this will be addressed in the conclusions with a prospective
from the structural point of view.
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2. Preliminary theory

2.1. Co-rotational formulation

In order to handle the large displacements and rotations
involved in the form finding process of actively bent structures, a
co-rotational formulation [11,12] for a three-dimensional beam
element is adopted. Unlike the Total Lagrangian and Updated
Lagrangian formulations [13], in the co-rotational approach the
motion of the element is treated as a result of a rigid motion plus
a deformation.

Assuming a geometry represented by a discrete set of nodes P
with coordinate �pi with arbitrary initial position in the Cartesian
coordinate system:

P ¼ f�p1 . . . �pi . . . �pm� g; �pi ¼ ½x y z� ð1Þ

and a connectivity list E storing the nodes’ indices of the element
ends (1;2):

E ¼ fe1 . . . ej . . . en� g; ej ¼ fi1; i2g ð2Þ

the rigid motion of the jth element is determined by an auxiliary
vector �pj connecting the element end nodes (�pi1 ; �pi2 ). Then, assuming
a ‘right-handed’ local reference frame f�xi; �yi;�zig for the generic i
node, the element deformation (local rotational and axial displace-
ments) is determined by computing the local frame orientation of
end nodes with respect to the element vector position �p.

With reference to Fig. 2, the local rotations of the �ej element
around the local (�xi and �yi) axes at its start node i1 are hx;1 and
hy;1, while hx;2 and hy;2 are the rotations around (the local frame)
at its i2 end node. Whereas, u is the angle of twist while e is the
axial shortening/elongation. The local shear displacements are
not explicitly set out because of the reference axes choice (at a
nodal level instead of element level).

From the element’s local rotations and displacements, the
corresponding element’s ends reactions can be obtained by dif-
ferentiating the beam’s expression of total strain energy U [14]
thus obtaining the bending moments Mx;1;My;1;Mx;2 and My;2, the
torsion moment Mu and the axial force N. Again, the local shear
forces are missing due to the reference axes choice. Such an ele-
ment’s local reactions are a function of its material and geometric
stiffness i.e.: the second moments of area (Ix and Iy), torsional con-
stant (J), cross-sectional area (A), element’s unstressed length (L0),
Young’s and shear moduli (E and G):

N ¼ EA
L0

e; Mu ¼
GJ
L0

u ð3Þ

Mx;1 ¼
NL0

30
ð4hx;1 � hx;2Þ þ

2EIx

L0
ð2hx;1 þ hx;2Þ ð4Þ

Mx;2 ¼
NL0

30
ð4hx;2 � hx;1Þ þ

2EIx

L0
ð2hx;2 þ hx;1Þ ð5Þ

My;1 ¼
NL0

30
ð4hy;1 � hy;2Þ þ

2EIy

L0
ð2hy;1 þ hy;2Þ ð6Þ

My;2 ¼
NL0

30
ð4hy;2 � hy;1Þ þ

2EIy

L0
ð2hy;2 þ hy;1Þ ð7Þ

The element’s bowing effect is taken into account by the appear-
ance of the axial force term N in the equations of moment (4)–(7)
The local element’s end scalar reactions so found are then trans-
formed into global vector reactions forces by imposing static equi-
librium to the element [15] or assuming equivalence of strain
energy [16] thus obtaining the global shear force vector components
(missing at a local reference frame level). With the global element’s
end reactions so found, an out-of-balance force Ri and out-of-bal-
ance moment Hi can be calculated for the generic ith node as vector
summation of global reactions of the elements surrounding the
node, plus external applied forces (and moments). Accordingly,
the equilibrium geometry (nodes position and local frame ori-
entations) such that the residuals Ri and Hi are null, can be found
by implementation of a explicit resolution method such as
Dynamic Relaxation (DR). The resolution of co-rotational beam-ele-
ment formulation by DR method was first developed by Williams
(as reported by Adriaenssens [14].

2.1.1. The dynamic relaxation
The DR method, firstly proposed by Day [17] and Otter [18], is a

fictitious time-stepping scheme, where the positions of nodes
representing a structural system are obtained by iterative numeri-
cal integration of Newton’s second law of motion until the entire
system reaches static equilibrium by the application of a viscous
or kinetic [19] damping term. For a given structural system, the
finding of the equilibrium geometry such that the residual forces
and moments (Ri and Hi) are null, can be pursued by implicit
Finite Element analysis procedures (e.g. the well known Newton–
Raphson method). However, an explicit Finite Element approach
(such as DR in conjunction with the co-rotational formulation)
allows the solution to converge independently of the magnitude
of the initial deformed state, and thus is more suitable for form
finding analyses involving large displacements. Moreover, since
the DR operates at a vector level, it does not require the assembly
and manipulation of a global stiffness matrix, hence it is relatively
easy to implement and suitable for parallel computing [20]. In

Fig. 1. Savill Garden grid shell, Windsor, UK 2006 [10]: (a) Internal view. (b) Detail
of the shear block connection. (Photos courtesy – Richard Harris.)

164 B. D’Amico et al. / Computers and Structures 154 (2015) 163–176



Download English Version:

https://daneshyari.com/en/article/509687

Download Persian Version:

https://daneshyari.com/article/509687

Daneshyari.com

https://daneshyari.com/en/article/509687
https://daneshyari.com/article/509687
https://daneshyari.com

