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a b s t r a c t

We present a new specification for the multinomial multiperiod probit model with autocorrelated errors.
In sharp contrast with commonly used specifications, ours is invariant with respect to the choice of a
baseline alternative for utility differencing. It also nests these standard models as special cases, allowing
for data-based selection of the baseline alternatives for the latter. Likelihood evaluation is achieved
under an Efficient Importance Sampling (EIS) version of the standard GHK algorithm. Several simulation
experiments highlight identification, estimation and pretesting within the new class of multinomial
multiperiod probit models.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we revisit the DynamicMultinomial (multiperiod)
Probit (hereafter DMP) model. DMPmodels offer a flexible and op-
erational framework for analyzing correlated sequences of discrete
choices such as living arrangement decisions for elderlies (Börsch-
Supan et al., 1990) or brand choices in successive purchases (Keane,
1997).
The standard DMP specification commonly used in the liter-

ature initially expresses all utilities in differences from that of a
baseline alternative which is selected a priori among all available
alternatives. It then assumes that the error terms associated with
these differences follow a stationary diagonal AR(1) process. One
common interpretation of that approach amounts to treating the
selected baseline utility as non-random; see, e.g., Börsch-Supan
et al. (1990) or Geweke et al. (1997). However, as we shall discuss
below, the standard DMP model suffers from a major drawback in
that it is not invariant with respect to the choice of the baseline
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alternative. Specifically, DMPmodels derived under different base-
line alternatives are non-nested and their respective parameteriza-
tions are not one-to-one transformations of one another. It follows
that results (estimations or test statistics) derived under different
baseline alternatives aremutually incompatible and, therefore, not
easily comparable.
In the present paperwe propose a dynamic version of themulti-

nomial probit model which is specified in terms of utilities prior
to differencing. It still relies upon an arbitrary baseline alternative
in order to construct the likelihood function. However, parame-
ters associatedwith different selections of baseline alternativewill
be in one-to-one correspondence with one another. Whence, our
specification will be invariant with respect to that selection.
In addition, our Dynamic Invariant Multinomial Probit (here-

after DIMP)model offers the critical advantage that it actually nests
all DMP versions thereof, corresponding to different baseline cat-
egories. Whence it becomes trivial to test whether an initial DIMP
model simplifies into a DMP model for a particular baseline alter-
native (whose selection is now data based instead of arbitrary).
Last but not least, the Monte Carlo (MC) evaluation of the likeli-

hood function of the DIMPmodel is not more demanding than that
of the standard DMP model. For the likelihood evaluation of both
specifications one can rely on very similar implementations of the
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GHK probability simulator as developed by Geweke (1991), Haji-
vassiliou (1990) and Keane (1994). Actually, in the present paper
we shall rely upon a numerically more Efficient Importance Sam-
pling version of the GHK algorithm (hereafter GHK-EIS) as devel-
oped in the companion paper by Liesenfeld and Richard (2009).
Invariance, nesting ofDMPs, and similar ease of computation of-

fer strong incentives for the adoption of our proposed DIMP spec-
ification by practitioners. In particular, it allows for pretesting of
whether a DIMPmodel can be subsequently simplified into a stan-
dard DMP model under data-based selection of a baseline alterna-
tive.
The remainder of the paper is organized as follows. In Section 2,

weuse a simple bivariate example in order to introduce someof the
key features of the DIMP model under a simplified notation. The
general DIMP specification is introduced in Section 3.1, followed
by a discussion of its invariance (Section 3.2), identification (Sec-
tion 3.3) and nesting properties (Section 3.4). Estimation is pre-
sented in Section 4with a brief description of GHK-EIS (Section 4.1)
followed by its application to likelihood evaluation (Section 4.2).
MC experiments are presented in Section 5: first a correctly speci-
fied DIMP (Section 5.1), next amis-specified DMP (Section 5.2) and
finally a sample-based pretesting of a correctly specifiedDMP (Sec-
tion 5.3). Section 6 concludes.

2. Introductory example

Consider the casewhere there are only two categorieswith util-
ities given by

Ut =
(
ut1
ut2

)
= µ (xt;β)+ εt , (1)

where µ(·) is momentarily left unspecified and εt follows a sta-
tionary AR(1) process
εt = Rεt−1 + ηt , ηt ∼ N2(0,Σ). (2)
Assume that we only observe the difference Yt = d′Ut with d′ =
(1,−1), or later only its sign. The following related three questions
are central to our paper:
(i) Which parameters remain identified?
(ii) Under what conditions would d′εt itself follow a stationary
AR(1) process?

(iii) Whatwould be the consequences of incorrectly assuming that
d′εt follows an AR(1) process?
For ease of exposition we initially consider the case when R

is diagonal with diagonal elements ρ1 and ρ2 (with |ρi| < 1).
Selecting an appropriate (re)parameterization helps to clarify the
issues under consideration. Since the transformation from εt to d′εt
implies a reduction in dimensionality from 2 to 1 and, therefore,
an (implicit) marginalization, we first introduce the auxiliary non-
singular transformation

ε∗t =

(
et
εt2

)
= Q εt , Q =

(
1 −1
0 1

)
, (3)

with et = d′εt = εt1 − εt2. Note that ε∗t follows the stationary
AR(1) process

ε∗t = R∗ε
∗

t−1 + η
∗

t , η∗t ∼ N2 (0,Σ∗) , (4)
with

R∗ = QRQ−1 and Σ∗ = QΣQ ′. (5)
LetΦ = (φij) denote the stationary covariance matrix of εt andΦ∗
that of ε∗t :

Φ∗ = QΦQ ′. (6)
The most relevant parameterization is that which is associated

with the factorization of the stationary density of ε∗t into amarginal
density for et and a conditional density for εt2|et . Whence,Φ∗ is re-
parameterized as

Φ∗ =

(
Ψ b2Ψ
b2Ψ υ2 + b22Ψ

)
, (7)

with Ψ > 0, υ2 > 0 and b2 ∈ R. For ease of reference,
the relationships between the successive parameterizations just
introduced are given by

φ11 =
σ 21

1− ρ21
, φ12 =

σ12

1− ρ1ρ2
, φ22 =

σ 22

1− ρ22
, (8)

Ψ = φ11 + φ22 − 2φ12, b2 =
φ21 − φ22

φ11 + φ22 − 2φ12
, (9)

υ2 =
φ11φ22 − φ

2
12

φ11 + φ22 − 2φ12
. (10)

For obvious reasons of symmetry we shall also consider the
(stationary) regression coefficient of εt1, on (εt2 − εt1), which is
given by

b1 =
φ21 − φ11

φ11 + φ22 − 2φ12
= − (1+ b2) . (11)

The parameterization used for the rest of the discussion consists
of (Ψ , b2, υ2, ρ1, ρ2) together with β . The identification for β
is standard and has to be achieved by means of restrictions on
the difference µ1(xt , β) − µ2(xt , β), while υ2, which represents
the variance of the conditional distribution of the utility error
term εt2 given et , is clearly unidentified. We are left discussing
the identification of (Ψ , b2, ρ1, ρ2). Eqs. (5) to (7) imply that
the stationary distribution of et is characterized by the following
moments:

Var (et) = Ψ , (12)

Cov (et−s, et) =
(
1 0

)
(R∗)sΦ∗

(
1
0

)
= γ ∗s Ψ , (13)

with

γ ∗s =
[
ρs1 + b2

(
ρs1 − ρ

s
2

)]
. (14)

Identification results for Ψ are standard. If d′Ut is observed,
then Ψ is identified. If only the sign of d′Ut is observed then it is
identified only up to a constant and this indeterminacy is typically
resolved by setting Ψ = 1. If b2 = 0, then ρ1 is identified.
If b2 = −1(b1 = 0), then ρ2 is identified. Otherwise, the
triples (ρ1, ρ2, b2) and (ρ2, ρ1, b1) are observationally equivalent,
in which case (ρ1, ρ2, b2) are locally but not globally identified.
However, as we shall discuss below, global identification of the
ρs and bs is obtained from the diagonal elements of Cov(et−s, et)
when the dimension of et is greater than 1 (except on a subspace
of measure zero).
It also follows from Eq. (14) that if any of the following three

conditions hold: (i) b1 = 0; (ii) b2 = 0; (iii) ρ1 = ρ2, then
γ ∗s = (γ

∗

1 )
s and et follows the stationary AR(1) process

et = γ ∗1 et−1 + λt . (15)

If none of these conditions holds, then while it still is the case that
Cov(λt , et−1) = 0 by construction, the higher-order Cov(λt , et−s)
are non-zero for s > 1. In other words, λt is no longer an
innovation relative to {eτ }t−2τ=1 and et no longer follows an AR(1)
process. Furthermore, even though |ρi| < 1, it does not even follow
that |γ ∗1 | < 1 since b2 ∈ R. Actually γ ∗1 is then unrestricted.
Note that the first-order covariance associated with γ ∗1 in Eq. (15)
does not suffice to identify the ρs and bs by itself. As we shall
formally demonstrate in Section 3.3 below, identification of these
parameters requires taking into consideration the higher-order
covariances.
The consequences of erroneously assuming that et follows an

AR(1) process when none of the conditions listed above holds
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