
Fine-grained parallel algorithm for unstructured surface mesh
generation

Dawei Zhao a, Jianjun Chen a,b,⇑, Yao Zheng a, Zhengge Huang a, Jianjing Zheng a

a Center for Engineering and Scientific Computation, and School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
b Zienkiewicz Centre for Computational Engineering, Swansea University, Swansea SA2 8PP, Wales, UK

a r t i c l e i n f o

Article history:
Received 14 January 2014
Accepted 4 April 2015
Available online 21 April 2015

Keywords:
Mesh generation
Parallel algorithm
Surface mesh
Domain decomposition
Graph partitioning

a b s t r a c t

A parallel surface meshing algorithm is proposed by exploiting the parallelism within the meshing pro-
cess of a surface, which is more efficient than the conventional scheme that meshes surfaces individually.
One integral part is the domain decomposition approach adopted, which ensures no small inter-domain
angles; therefore, the parallel meshing procedure can fix the inter-domain boundary without compromis-
ing mesh quality. Combining the parallel surface mesher with the parallel tetrahedral mesher and impro-
ver developed previously, a parallel preprocessing pipeline for large-scale simulations is set up. It only
consumes minutes to prepare a mesh containing hundreds of millions of elements.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Thanks to the rapid advance of high performance computing
(HPC) technologies, parallel machines are more and more
cost-effective. In both the academic and industry communities,
various CFD codes have been parallelised for many years to exploit
the huge computing power of parallel machines efficiently. It was
reported that some academic parallel CFD codes were able to
exploit hundreds of thousands of computer cores to efficiently
solve a problem containing billions of elements [1]. In the
aerodynamics industry, CFD simulations usually involve thousands
of computer cores, and the simulation time ranges from hours to
days.

However, the wall-clock time to finish a complex simulation is
far more than that consumed by a parallel simulation code, large
portion of which accounts for mesh generation. For instance, it
usually takes weeks or more to prepare a block-structured mesh
in the exterior flow simulation of a complete aircraft model, even
when the engineer is an expert user of a state-of-the-art commer-
cial or in-house meshing tool [2]. Unstructured mesh generation
does not require a painful process to decompose a complex domain
into blocks; hence, it is more automatic. However, the process of
generating an unstructured mesh composed of ten million mesh

points may consume about an hour CPU time if executed sequen-
tially [3–6]. In practice, when the input geometry is very complex,
or a high standard is set for mesh quality, mesh generation is a
trial-and-error process, and may need to be repeated many times.
Therefore, the wall-clock time for preparing a large-scale unstruc-
tured mesh is usually comparable with or more than the time for
conducting parallel simulations.

Parallelisation is a feasible way to speed up the meshing
process. The studies on parallel mesh generation have started
since the 1990s. In the early stage, the principal motivation was
to overcome the memory bottleneck to generate a large-scale
mesh [7,8]. Nowadays, a 64-bit desktop computer may be
configured with a large amount of memory at an affordable price.
Hence, the memory issue is no longer prominent, although to
break it is still beneficial. However, the other motivation of
developing parallel meshers, i.e., to overcome the time bottleneck
of generating a large-scale mesh, is still meaningful. To fully
exploit the computing power of ever emerging parallel com-
puters, a simulation environment where both the simulation code
and its pre and post processing codes are parallelised is now
highly demanded [6,9].

For a typical 3D simulation, surface mesh generation, volume
mesh generation, and volume mesh improvement are three major
steps involved in the preparation of an unstructured mesh. We
have presented parallel schemes for volume mesh generation and
improvement recently [10]. In this study, we attempt to parallelise
the surface meshing step in order to develop a complete parallel
pipeline for the generation of large-scale unstructured meshes.

http://dx.doi.org/10.1016/j.compstruc.2015.04.004
0045-7949/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Center for Engineering and Scientific Computation,
and School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027,
China. Tel.: +86 571 8795 1883; fax: +86 571 8795 3167.

E-mail address: chenjj@zju.edu.cn (J. Chen).

Computers and Structures 154 (2015) 177–191

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate /compstruc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2015.04.004&domain=pdf
http://dx.doi.org/10.1016/j.compstruc.2015.04.004
mailto:chenjj@zju.edu.cn
http://dx.doi.org/10.1016/j.compstruc.2015.04.004
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


Parallel volume meshing study abounds in the literature,
whereas its surface counterpart was discussed rarely. In [11], a
simple scheme was proposed for CAD models composed of many
surfaces. The sequential process meshes each surface individually.
So, considering the process of meshing each surface as a task, the
meshing tasks of all surfaces are distributed on different processors
and conducted in parallel. This scheme is essentially not scalable
and its efficiency highly depends on geometric natures of the sur-
face model. If the number of surfaces ðMÞ is far more than the num-
ber of computer cores ðNÞ, and the meshing time of each surface
(referred to as the load of a surface hereafter) is roughly equal, a
high efficiency is possible; otherwise, the efficiency may be very
low.

In this study, an enhanced algorithm is proposed to overcome
the bottleneck of the above scheme in terms of scalability and effi-
ciency. In the enhanced algorithm, a surface with large loads is
split into many smaller subdomains, and these subdomains are
meshed individually. Therefore, the proposed algorithm is fine-
grained because it takes advantage of the parallelism within the
meshing process of a surface. The total number of subdomains is
determined in the run time and scalable with N rather than being
fixed as M. Therefore, the load difference between different mesh-
ing tasks no longer depends on the surface loads, but is control-
lable by the user. By subdividing large surfaces properly, it is
possible to avoid the case where the time of meshing a single sur-
face dominates the overall meshing time. Moreover, each subdo-
main has a similar representation like the original surface, and
the sequential mesher can handle it without modification. This full
reuse capability is very desirable because it minimises the cost of
parallelising a sequential code, in particular if the sequential code
may need constant improvement.

The decomposition of a surface model is essential to the success
of the proposed parallel scheme. The domain decomposition tools
that prevail in parallel solutions of partial differential equations
(PDEs) mainly focus on reducing load imbalances and interface
communications, and are incompetent to avoid the generation of
a poorly shaped inter-domain boundary, which is harmful in the
context of parallel mesh generation:

(1) Some mesh generation schemes require that the boundary
angles be within certain bounds in order to guarantee the
termination and to achieve a provably good element quality.
When these schemes are employed on subdomain mesh
generation, the artificial features such as small angles are
prohibitive [12–14].

(2) A poorly shaped boundary is troublesome because low-qual-
ity elements may form in its neighbourhood. To prepare a
qualified mesh for simulations, a time-consuming step to
improve these elements is indispensable, e.g., assimilating
the submeshes (if the memory allows) and then improving
the entire mesh sequentially [15,16], or improving the dis-
tributed mesh concurrently at the cost of inter-processor
operations [17].

In this study, a novel approach for domain decomposition that
features its ability to produce an inter-domain boundary having
good geometric properties is examined. The domain is filled up
with a non-overlapping mesh first (referred to as a background
mesh hereafter). This mesh is generated under a coarsened size
map; hence, it is much coarser than the final mesh. Instead of
directly sending the background mesh to a graph partitioner
[18,19], an intermediate procedure is proposed to simplify the
mesh based on some local operations defined on the dual graphs
of the mesh. Partitioning the simplified mesh rather than the initial
mesh produces a distributed mesh that not only fulfils the dual
goals of load balancing and minimisation of communications, but

also contains desirable geometric properties in the inter-domain
boundary. Therefore, the subsequent parallel meshing procedure
can fix the inter-domain boundary without compromising the
quality of elements around this boundary, and any sequential
mesher that respects domain boundary can be reused. In the mean
time, because the meshing procedure involves no communications,
its parallel efficiency is very high.

To demonstrate the effectiveness of the proposed domain
decomposition approach, a parallel surface mesher is developed
by integrating a sequential mesher based on the advancing front
technique (AFT) and employing the message passing interface
(MPI) standard for parallel implementation. Combining the parallel
surface mesher with the parallel tetrahedral mesher and improver
we developed previously, a parallel preprocessing pipeline for
large-scale simulations has been set up on the distributed comput-
ing environment. For typical computational aerodynamics config-
urations, it only consumes minutes to prepare a mesh containing
hundreds of millions of elements; however, a traditional sequential
pipeline may take several hours to prepare this mesh.

2. Related works

Domain decomposition approaches have been applied in vari-
ous disciplines of parallel computing. Instead of presenting a com-
plete range of references, our review only pertains to those related
to parallel mesh generation. In accordance with how the inter-
domain interfaces are treated in parallel mesh generation, three
types of domain decomposition approaches are summarised [7]:

(1) Those for the parallel mesh generation approaches that
mesh interfaces as they mesh subdomains;

(2) Those for the parallel mesh generation approaches that post-
mesh the interfaces;

(3) Those for the parallel mesh generation approaches that pre-
mesh the interfaces.

Chrisochoides and Nave [20] and Okusanya and Peraire [21]
examined the first type of parallel mesh generation approach. A
boundary conforming background mesh is partitioned into the
same number of submeshes as that of processors. Each submeshes
are refined on a single processor individually by using a parallel
version of Delaunay point insertion kernel. If the cavity formed
in the insertion of a new point does not cross the inter-domain
boundary, the insertion operation runs locally; otherwise, a remote
data gathering operation is required to enforce the mesh confor-
mity. The submeshes are redistributed at intervals to balance the
loads, and their boundaries are changed accordingly.

de Cougny and Shephard [7,22] adopted the second domain
decomposition approach to parallelise their tetrahedral meshes.
Firstly, the octant cells that cover (interior cells) or intersect
(boundary cells) the problem domain are distributed evenly on
the processors, and then the majority of interior cells is tetrahedra-
lised using the mesh templates in parallel. Next, a cavity zone is
formed by combing the boundary cells and their neighbouring
interior cells on each processor. Between the adjacent cavities,
three types of buffer zones are set up around the inter-processor
faces, inter-processor lines and inter-processor points, respec-
tively. The cavity zones are filled in an order of meshing non-buffer
zones first, and then meshing face-related, line-related and point-
related buffer zones successively. In the interim of these meshing
steps, meshes are redistributed and the subdomain boundaries
are changed as well.

In an early parallel advancing front algorithm proposed by
Löhner [23], the meshing stage of subdomain interiors also takes
the precedence to that for interfaces. An octree that covers the

178 D. Zhao et al. / Computers and Structures 154 (2015) 177–191



Download	English	Version:

https://daneshyari.com/en/article/509688

Download	Persian	Version:

https://daneshyari.com/article/509688

Daneshyari.com

https://daneshyari.com/en/article/509688
https://daneshyari.com/article/509688
https://daneshyari.com/

