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Many key macroeconomic and financial variables are characterized by permanent changes in
unconditional volatility. In this paper we analyse vector autoregressions with non-stationary
(unconditional) volatility of a very general form, which includes single and multiple volatility breaks as
special cases. We show that the conventional rank statistics computed as in Johansen (1988, 1991) are
potentially unreliable. In particular, their large sample distributions depend on the integrated covariation
of the underlying multivariate volatility process which impacts on both the size and power of the
associated co-integration tests, as we demonstrate numerically. A solution to the identified inference
problem is provided by considering wild bootstrap-based implementations of the rank tests. These do
not require the practitioner to specify a parametric model for volatility, or to assume that the pattern of
volatility is common to, or independent across, the vector of series under analysis. The bootstrap is shown

to perform very well in practice.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A number of recent applied studies have suggested time-
varying behaviour, in particular a general decline, in unconditional
volatility in the shocks driving macroeconomic time series over
the past twenty years or so is a relatively common phenomenon;
see, inter alia, Busetti and Taylor (2003), Kim and Nelson (1999),
McConnell and Perez Quiros (2000), van Dijk et al. (2002), Sensier
and van Dijk (2004) and references therein. For example, Sensier
and van Dijk (2004) report that over 80% of the real and price
variables in the Stock and Watson (1999) data set reject the null
of constant innovation variance against the alternative of a one-
off change in variance. Similarly, Loretan and Phillips (1994) report
evidence against the constancy of unconditional variances in stock
market returns and exchange-rate data, while Hansen (1995) notes
that empirical applications of autoregressive stochastic volatility
models to financial data generally estimate the dominant root in
the stochastic volatility process to be close to the non-stationarity
boundary at unity. van Dijk et al. (2002) find evidence that volatility
changes smoothly over time, while Watson (1999) argues that
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multiple changes in volatility are commonly observed. Cavaliere
and Taylor (2007) report evidence of multiple volatility breaks and
trending volatility in the monthly producer price inflation series
from the well-known Stock and Watson (1999) database.

These findings have helped stimulate an interest amongst
econometricians in analysing the effects of non-constant volatility
on univariate unit root and stationarity tests; see, inter alia, Kim
et al. (2002), Busetti and Taylor (2003), Cavaliere (2004), and
Cavaliere and Taylor (2005, 2007, 2008). These authors show that
standard unit root and stationarity tests based on the assumption
of constant volatility can display significant size distortions in the
presence of non-constant volatility. Cavaliere and Taylor (2008)
develop wild bootstrap-based implementations of standard unit
root tests which are shown to yield pivotal inference in the
presence of non-stationary volatility. The impact of non-constant
volatility on stable autoregressions has also been analysed by
Hansen (1995), Phillips and Xu (2006), Xu and Phillips (2008) and
Xu (2008), inter alia, who show that non-constant volatility can
have a large impact on standard estimation and testing procedures.

Given that non-constant volatility has been found to be a com-
mon occurrence in univariate macroeconomic and financial time
series, and to have a large impact on univariate time series pro-
cedures, it is clearly important and practically relevant to inves-
tigate the impact that such behaviour has on multivariate non-
stationary time series methods. Indeed, using U.S. data, Hansen
(1992a) has shown that the regression error in four published co-
integrating relations (namely, real per capita consumption upon
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real per capita disposable income; aggregate non-durables and ser-
vices consumption upon disposable income; real stock prices upon
real dividends, short term upon long term interest rates) are all
affected by non-stationary variances. Cavaliere and Taylor (2006)
consider the impact of non-constant volatility on residual-based
tests for the null hypothesis of co-integration.

In this paper we analyse the impact of non-stationary volatility
in the (vector) innovation process driving a co-integrated vector
autoregressive (VAR) model. We allow for innovation processes
whose variances evolve over time according to a quite general
mechanism which allows, for example, single and multiple abrupt
variance breaks, smooth transition variance breaks, and trending
variances. We analyse the impact that this has on the conventional
trace and maximum eigenvalue statistics of Johansen (1988, 1991),
demonstrating that the asymptotic null distributions of these
statistics depend upon the (asymptotic) integrated covariation of
the underlying volatility process. Simulation results for a one-time
change in volatility suggest that this can have a large impact on
both the size and power properties of the tests.

In order to solve the inference problem identified, at least
within the class of volatility processes considered, we extend
the univariate wild bootstrap-based unit root tests of Cavaliere
and Taylor (2008) to the multivariate context by developing
wild bootstrap-based implementations of Johansen’s maximum
eigenvalue and trace test statistics. Our proposed wild bootstrap
procedure is set up in such a way that the practitioner is not
required to specify any parametric model for volatility, or to
assume that the pattern of volatility is common to, or independent
across, the vector of series under analysis.

In a recent paper, Boswijk and Zu (2007) discuss maximum
likelihood (ML) estimation and co-integration rank testing in
VAR models when the (possibly non-stationary) spot volatility
changes smoothly over time and can be estimated consistently.
In contrast to the wild bootstrap approach used in this paper,
the ML approach of Boswijk and Zu (2007), although based on
a non-pivotal statistic, is asymptotically efficient (under certain
conditions on the volatility process), exploiting (in the limit)
the potential power gains that can arise from using the true
likelihood ratio test in a correctly specified model. The approach
of Boswijk and Zu (2007) might therefore be expected to deliver
more powerful tests than obtain from our bootstrap approach. On
the other hand, since estimation of the (spot) volatility process is
not required for the bootstrap tests discussed here, they are likely
to have much better finite sample size properties in the presence
of non-stationary volatility than the corresponding tests of Boswijk
and Zu (2007).! In this respect, the test proposed in Boswijk
and Zu (2007) represents an important complement to the wild
bootstrap method proposed in this paper. However, it is important
to note that we adopt a different assumption to Boswijk and Zu
(2007) regarding the class of non-stationary volatility processes
allowed. In particular, while we allow for processes which display
abrupt volatility shifts, Boswijk and Zu (2007) require the volatility
process to be continuous. Moreover, our analysis does not require
the existence of a consistent estimator of the underlying spot
volatility.

Seo (2007) considers ML estimation (but does not discuss
co-integration rank testing) of a co-integrated system when the

1 This trade-off of size against power is well documented in the univariate
case. Specifically, Boswijk (2005) shows that in the presence of time-varying
unconditional volatility, a ML test combined with a consistent estimator of the spot
volatility leads to unit root tests with power almost indistinguishable from that of
the (asymptotic) local power envelope. This approach, however, can suffer from
quite serious size distortions in small samples. Conversely, wild bootstrap unit root
tests as in Cavaliere and Taylor (2008), although not optimal, lead to tests with very
good size properties.

errors are conditionally heteroskedastic. However, he imposes
weak stationarity and so does not allow for time-varying behaviour
in the unconditional volatility process. Other related work is
considered by Hansen (2003), who considers estimation and
testing in a co-integrated VAR model that allows for a finite number
of deterministic breaks in the covariance matrix of the system.
In contrast to the wild bootstrap approach outlined in this paper,
Hansen (2003) adopts a parametric approach to structural change,
requiring that the location of the breaks in the parameters of
the covariance matrix and the number of co-integrating relations
present in the system are known. A further difference is that the
innovations in Hansen (2003) are assumed to be homoskedastic
within each regime, such that the moving average representation
of the system within each regime is identical to that given in
Johansen (1996). In particular, this entails that both the co-
integrating relations and the common trends are homoskedastic
within each regime.

The remainder of the paper is organized as follows. Section 2
outlines our heteroskedastic co-integrated VAR model, giving
both error correction and common trend representations for
the model. Here we also discuss the form of the co-integrating
relationships in the context of this model. In Section 3 the impact
of non-stationary volatility on the large sample properties of
Johansen’s maximal eigenvalue and trace statistics is detailed. Here
we also demonstrate the important result that the MLE of the
parameters from our co-integrated VAR model remains consistent.
Our wild bootstrap-based approach, which also incorporates a
sieve procedure using the (consistently) estimated coefficient
matrices from the co-integrated VAR model, is outlined in Section 4
and it is shown that this solves the inference problem caused
by non-stationary volatility, yielding asymptotically pivotal co-
integration tests. Monte Carlo experiments illustrating the effects
of one-time (co)variance shifts on both standard and bootstrap co-
integration tests are presented in Section 5. Here it is shown that
the proposed bootstrap tests perform very well for finite samples.
Section 6 concludes. All proofs are contained in the Appendix.

oW, P,
In the following ‘—' denotes weak convergence, ‘—' conver-

gence in probability, and ‘—w>p' weak convergence in probability
(Giné and Zinn, 1990; Hansen, 1996); I(-) denotes the indicator
function and ‘x := y’ (x =: ¥’) indicates that x is defined by y (y
is defined by x); |-| denotes the integer part of its argument. The
notation Crmxn [0, 1] is used to denote the space of m x n matrices
of continuous functions on [0, 1]; Dgmxn[0, 1] denotes the space
of m x n matrices of cadlag functions on [0, 1]. The space spanned
by the columns of any m x n matrix A is denoted as col(A); if A
is of full column rank n < m, then A; denotes an m x (m — n)
matrix of full column rank satisfying A}, A = 0. For any square ma-
trix, A, |A| is used to denote the determinant of A, ||A| the norm
IA|I” := tr {A’A}, and p(A) its spectral radius (that is, the maximal
modulus of the eigenvalues of A). For any vector, x, || x|| denotes the
usual Euclidean norm, ||x|| := (x'x)'/.

2. The heteroskedastic co-integration model

We consider the following VAR(k) model in error correction
format:

AXy =af'Xe—1 + WU +uDe + &, t=1,...,T (1
& = OtZt (2)
where: X; and e; arep x 1,01 ispxp, U := (AX[_, ..., AX[ .}

isplk—1) x1land ¥ := (I, ..., I'k_1), where {Fi}f:_]] arep X p
lag coefficient matrices, D; is a vector of deterministic terms, z; is
p-variate i.i.d., zz ~ (0, I,), where I, denotes the p x p identity
matrix, and « and g are full column rank p x r matrices, r < p.
The initial values Xo := (X, ..., X, )" are assumed to be fixed
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