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a b s t r a c t

In this paper, an a posteriori error estimator of the recovery type is developed for the gradient elasticity
theory of Aifantis. This version of gradient elasticity can be implemented in a staggered way, whereby
solution of the classical equations of elasticity is followed by solving a reaction–diffusion equation that
introduces the gradient enrichment and removes the singularities. With gradient elasticity, singularities
in the stress field can be avoided, which simplifies error estimation. Thus, we develop an error estimator
associated with the second step of the staggered algorithm. Stress-gradients are recovered based on the
methodology of Zienkiewicz and Zhu, after which a suitable energy norm is discussed. The approach is
illustrated with a number of examples that demonstrate its effectiveness.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In classical elasticity, the stresses depend only on the first order
derivative of displacements (strains) and not on higher-order
derivatives. No information on the material’s microstructure is pre-
sent in classical elasticity, and as a consequence size-dependent
behaviour cannot be captured with classical elasticity. Moreover,
classical elasticity is plagued by the occurrence of singular stresses
and strains at the tips of sharp cracks, re-entrant corners or where
point loads are applied. An alternative to classical elasticity is
so-called gradient elasticity, in which the field equations are
equipped with additional higher-order spatial derivatives of the
relevant state variables. The higher-order terms are accompanied
by an additional material parameter with the dimensions of length
– this parameter is linked to the micro-structural geometry and is
called ‘‘internal length scale’’. Due to the presence of such an inter-
nal length scale, size-dependent mechanical behaviour can be
described [5,7]. Furthermore, the occurrence of singularities in
the stress and strain field can be avoided with gradient elasticity.

One of the most versatile variants of gradient elasticity theory is
the Aifantis theory [1–3]. Its attractiveness is due to its mathemati-
cal structure, which allows the fourth-order equilibrium equations
to be solved as an uncoupled sequence of two sets of second-order
equations [3]. For numerical implementations, this has the signifi-
cant consequences that simple, C0-continuous interpolations suf-
fice for the spatial discretisation. This makes finite element

implementation straightforward, as has been demonstrated in a
number of studies [4–8].

We can use a priori and a posteriori error estimation techniques
in order to determine the accuracy of numerical solutions. A sys-
tematic comparative presentation of these techniques is given in
[9], and an in-depth discussion on various types of estimators
can be obtained in [18]. The two main families of a posteriori error
estimators are the residual type estimators [10,11] and the recov-
ery type estimators [12–14] – here, the discussion will focus on the
latter. The recovery type error estimators have been first intro-
duced by Zienkiewicz and Zhu [12] and later, the authors pre-
sented the so-called superconvergent patch recovery method
which improved the performance of recovery based methods
[13,14]. This error estimate can also be applied to hierarchical p-re-
finement with a slight modification as given in [15]. A local a pos-
teriori error estimator for the extended finite element method is
devised in [16] which is based on a derivative recovery technique
in the L2 norm and is applied to linear elastic fracture mechanics.
In their later study, the authors proposed an extended global
derivative recovery technique for extended finite elements [17].

Thus, recovery type error estimators can be devised for use in
fracture mechanics, where singularities are known to exist in the
solution. However, and as argued above, it is also possible to anal-
yse cracks with gradient elasticity by which singularities in the
stress field can be avoided altogether. This should facilitate error
estimation, and in this study a recovery type a posteriori error
estimator for gradient elasticity will be developed. After revisiting
the basic equations of the Aifantis gradient elasticity theory in
Section 2 and its finite element implementation in Section 3, the
suggested error estimator will be discussed in Section 4. The
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effectiveness of this approach is demonstrated with two bench-
mark problems in Section 5.

2. Aifantis’ gradient elasticity theory

One of the most popular gradient elasticity theories is the one
derived by Aifantis and co-workers in the early 1990s [1–3]. In this
theory, the usual linear elastic constitutive relations are extended
with the Laplacian of the strain as

rij ¼ Cijkl ekl � ‘2ekl;mm
� �

ð1Þ

where r is the Cauchy stress, C is the constitutive tensor, e is the
usual infinitesimal strain and ‘ is an internal length scale parameter
representing the microstructure of the material. The equilibrium
equations can be written in terms of displacement derivatives as

Cijkl uk;jl � ‘2uk;jlmm

� �
þ bi ¼ 0 ð2Þ

where b are the body forces. The attractiveness of this theory is (i)
that it contains only one internal length scale parameter, and (ii)
that its mathematical structure allows to solve the fourth-order
partial differential equations as an uncoupled sequence of two sets
of second-order equations. More specifically, the various derivatives
in Eq. (2) can be factorised, so that Eq. (2) can be rewritten as

Cijkluc
k;jl þ bi ¼ 0 ð3Þ

which are the equations of classical elasticity, followed by

u g
k � ‘

2u g
k;mm ¼ uc

k ð4Þ

Here uc are the displacements following from the classical elasticity
equations, whilst ug are the gradient-enriched displacements. Note
that ug in Eq. (4) is identical to u in Eq. (2), and the superscript g is
used to distinguish the gradient-enriched displacements from its
classical counterpart.

If Eq. (4) is substituted back into Eq. (3), it is easily verified that
Eq. (2) is retrieved. When this operator split was suggested first by
Ru and Aifantis [3], the gradient enrichment was expressed in
terms of displacements as given in Eq. (4). However, it can also
be evaluated in terms of stresses by differentiation as

r g
ij � ‘

2r g
ij;mm ¼ Cijkluc

k;l ð5Þ

The use of Eq. (5) instead of Eq. (4) has some advantages: it was
demonstrated in [5,6] that the use of Eq. (4) does not necessarily
remove the singularities from all stress components at the tip of
sharp cracks, whereas all stress singularities are removed if Eq.
(5) is used – this discrepancy can be attributed to the nature of
the variationally consistent boundary conditions [5].

3. Implementation of Aifantis’ theory

In this section, matrix–vector notation will be used instead of
index notation, as is customary in finite element literature. A finite
element implementation of the Aifantis’ theory which is based on
Eq. (4) was first given in [4] and then extended to include Eq. (5) in
[5]. In this study, and following the recommendations in [5], Eqs.

(3) and (5) are used for the implementation of the Aifantis theory
of gradient elasticity.

Eq. (3) is the usual expression of equilibrium in classical elastic-
ity, the spatial discretisation of which is well known and does not
need to be repeated here. The weak form of Eq. (5) is obtained by
premultiplying with a virtual strain field de and integrating over
the domain X asZ

X
deT � ðr� ‘2r2r� CLuÞdV ¼ 0 ð6Þ

where L is the usual strain–displacement differential operator,
which in the two dimensional case is defined as

LT ¼
@
@x 0 @

@y

0 @
@y

@
@x

" #
ð7Þ

Integrating by parts and substituting de ¼ Sdr, where S ¼ C�1,
results inZ

X
drT SrdV þ

Z
X

@rT

@x
Sl2

@r
@x
þ @r

T

@y
Sl2

@r
@y

� �
dV �

Z
X

drT LudV ¼ 0

ð8Þ

Here, the boundary terms are ignored, which is equivalent to adopt-
ing the homogeneous natural boundary condition n � rr = 0 [5,7].
Finite element discretisation of Eq. (8) gives

drT
Z

X
NT

rSNr þ
@NT

r
@x

S‘2 @Nr

@x
þ @NT

r
@y

S‘2 @Nr

@y

 !
dVr

¼ drT
Z

X
NT

rBudVu ð9Þ

The two fields of unknowns, namely the classical displacements and
the gradient-enriched stresses, are discretised with shape functions
Nu and Nr, respectively. Furthermore, Bu = LNu and underlined vec-
tors contain the discretised nodal values of their continuous coun-
terparts. With these specifications, the resulting system of
equations can be written as

Kuu 0
�KT

ur Krr

� �
u

r

� �
¼

f

0

� �
ð10Þ

where f is the external force vector, and

Kuu ¼
Z

BT
uCBudV ð11Þ

Kur ¼
Z

BT
uNrdV ð12Þ

Krr ¼
Z

NT
rSNr þ

@NT
r

@x
S‘2 @Nr

@x
þ @NT

r
@y

S‘2 @Nr

@y

 !
dV ð13Þ

Eq. (10) is a decoupled system of equations in which the first row of
equations can be solved prior to the second row of equations. Thus,
it can be said that the gradient-enrichment (second row of equa-
tions) constitutes a post-processing of the results of classical elas-
ticity (first row of equations).

E = 1000000 kN/m2 ;  h=0.15 m ;  ν = 0.20 
2 m

4 m

1 kN

Fig. 1. Cantilever beam under a tip load of 1 kN.
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