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a b s t r a c t

This paper considers instrumental variable regressionwith a single endogenous variable and the potential
presence of weak instruments. I construct confidence sets for the coefficient on the single endogenous
regressor by inverting tests robust to weak instruments. I suggest a numerically simple algorithm for
finding the Conditional Likelihood Ratio (CLR) confidence sets. Full descriptions of possible forms of
the CLR, Anderson–Rubin (AR) and Lagrange Multiplier (LM) confidence sets are given. I show that the
CLR confidence sets have nearly the shortest expected arc length among similar symmetric invariant
confidence sets in a circular model. I also prove that the CLR confidence set is asymptotically valid in
a model with non-normal errors.
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1. Introduction

This paper considers confidence sets for the coefficient β on
the single endogenous regressor in an instrumental variable (IV)
regression. A confidence set provides information about a range
of parameter values compatible with the data. A good confidence
set should adequately describe sampling uncertainty observed in
the data. In particular, a confidence set should be large, possibly
infinite, if the data contains very little or no information about a
parameter. Inmany empirically relevant situations, the correlation
between the instruments and the endogenous regressor is almost
indistinguishable from zero (so-called weak instruments case),
and little or no information about β can be extracted. When
instruments can be arbitrarily weak, a confidence set with
correct coverage probability must have an infinite length with
positive probability (Gleser and Hwang, 1987; Dufour, 1997).
Most empirical applications use the conventionalWald confidence
interval, which is always finite. As a result, the Wald confidence
interval has a low coverage probability (Nelson and Startz, 1990)
and should not be usedwhen instruments areweak (Dufour, 1997).
To construct a confidence set robust to weak instruments, one

can invert a test which has the correct size evenwhen instruments
are weak. Namely, a confidence set with correct coverage can be
constructed, as the set of β0 for which the hypothesis H0 : β = β0
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is accepted. The idea of inverting robust tests in the context of
IV regression was first proposed by Anderson and Rubin (1949)
and has recently been used by many authors, including Moreira
(2002), Stock et al. (2002), Dufour et al. (2004) and Kleibergen and
Mavroeidis (2009). The class of tests robust to weak identification
includes but is not limited to the Anderson and Rubin (1949) (AR)
test, the Lagrange multiplier (LM) test proposed by Kleibergen
(2002) and Moreira (2002), and the Conditional Likelihood Ratio
(CLR) test suggested by Moreira (2003).
This paper has three main goals. The first is to provide a

practitioner with simple and fast algorithms for obtaining the CLR,
AR and LM confidence sets; currently a fast inversion algorithm
exists for AR but not for the CLR or the LM. The second goal
is to compare these confidence sets using the expected length
as a criterion. Last, but not least, I prove that the confidence
sets mentioned above have asymptotically correct coverage; this
entails a non-trivial extension of point-wise validity arguments in
the literature to uniform validity.
The paper addresses the practical problem of inverting the CLR,

LM and AR tests. One way of inverting a test is to do grid testing,
namely, to perform a series of tests H0 : β = β0, where β0 belongs
to a fine grid. This procedure, however, is numerically cumber-
some. Due to the simple form of the AR and LM tests, it is rela-
tively easy to invert them by solving polynomial inequalities (this
is known for the AR, but apparently not for the LM). The problem
of inverting the CLR test is more difficult, since both the LR statistic
and a critical value are complicated functions ofβ0. I find a very fast
way to numerically invert the CLR test without using grid testing.
I also characterize all possible forms of the CLR confidence region.
The paper also compares the three abovementioned confidence

sets in terms of expected length and attempts to establish

0304-4076/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.jeconom.2009.12.003

http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
mailto:amikushe@mit.edu
http://dx.doi.org/10.1016/j.jeconom.2009.12.003


A. Mikusheva / Journal of Econometrics 157 (2010) 236–247 237

optimality of the CLR confidence set. According to Pratt’s (1961)
theorem (also see Ghosh (1961)), the uniformly most powerful
(UPM) test produces the confidence set with the shortest expected
length if the expected length is finite. Andrews et al. (2006)
show that the CLR test is nearly UMP in the class of two-sided
similar tests invariant with respect to orthogonal transformations
of instruments. This suggests that a confidence set corresponding
to the CLR test may possess some optimality properties with
respect to length. There are, however, two obstacles in applying
Pratt’s theorem directly. First, the expected length of a confidence
set with correct coverage in the case of weak instruments must be
infinite. Second, the CLR does not maximize power at every point,
rather it nearly maximizes the average power at two points lying
on different sides of the true value. The locations of the points
depend on each other, but they are not symmetric, at least in the
native parametrization of the IV model.
The reasons stated above prevent establishing ‘‘length opti-

mality’’ of the CLR confidence set in the native parametrization.
However, in a circular version (re-parametrization into spherical
coordinates) of the simultaneous equationmodel considered in the
statistics literature by Anderson (1976), and Anderson et al. (1985)
and suggested in the present context by Hillier (1990) and Cham-
berlain (2005), the CLR sets have some near optimality properties.
In spherical coordinates the parameter of interest, φ, lies on a one-
dimensional unit circle. This parameter, φ, is in one-to-one corre-
spondence with the coefficient, β , on the endogenous regressor.
This circular model has two nice features. First, the length of the
parameter space for φ is finite, which makes every confidence set
for φ finite (a confidence interval of length Pi for φ corresponds to
a confidence set for β equal to the whole line). Second, a circular
model possesses additional symmetry and invariance properties.
In particular, the two-sidedness condition corresponds to a sym-
metry on the circle. I show that the CLR confidence set has a nearly
minimal arc length among symmetric similar invariant confidence
sets in a simultaneous equation model formulated in spherical co-
ordinates.
I use simulations to examine the distribution of the lengths of

the CLR, AR, and LM confidence sets for β in linear coordinates. I
also compute their expected lengths over a fixed finite interval. I
find that the distribution of the length of the CLR confidence set
is first order stochastically dominated by the distribution of the
length of the LM confidence set. It is, therefore, not advisable to
use the LM confidence set in practice.
If one compares the length of the CLR and AR sets over a fixed

finite interval, then the CLR confidence set is usually shorter. The
distributions of length of the AR and CLR confidence sets, however,
do not dominate one another in a stochastic sense. The reason is
that the AR confidence set can be emptywith non-zero probability.
In other words, the distribution of length of the AR confidence
set has a mass point at zero. This peculiarity of the AR confidence
set can be quite confusing for applied researchers, since an empty
interval makes inferences impractical.
The third main result of this paper is a proof of asymptotic

validity of the CLR confidence set. Moreira (2003) showed that
if the reduced form errors are normally distributed with zero
mean and known covariance matrix, then the CLR test is similar,
and the CLR confidence set has exact coverage. Andrews et al.
(2006) showed that without these assumptions a feasible version
of the CLR test has asymptotically correct rejection rates both in
weak instrument asymptotics and in strong instrument (classical)
asymptotics. I add to their argument by proving that a feasible
version of the CLR has asymptotically correct coverage uniformly
over the whole parameter space (including nuisance parameters).
The paper is organized as follows. Section 2 contains a brief

overview of the model and definitions of the CLR, AR, and LM
tests. Section 3 gives algorithms for inverting the CLR, AR and LM

tests. Section 4 discusses a correspondence between properties
of tests and properties of confidence sets. Section 5 provides the
results of simulations comparing the length of the CLR, AR, and LM
confidence sets. Section 6 contains a proof of a theorem about a
uniform asymptotic coverage of the CLR confidence set. Section 7
concludes.

2. The model and notation

In this section I introduce notation and give a brief overview
of the tests used in this paper for the confidence set construction.
I keep the same notation as in Andrews et al. (2006) for the
simultaneous equationsmodel in linear coordinates and try to stay
close to the notation of Chamberlain (2005) for the model written
in spherical coordinates (the circular model).
We start with a model containing structural and reduced form

equations with a single endogenous regressor:

y1 = y2β + Xγ1 + u; (1)
y2 = Zπ + Xξ + v2. (2)

Vectors y1 and y2 are n × 1 endogenous variables, X is n × p
matrix of exogenous regressors, Z is n × kmatrix of instrumental
variables,β is the coefficient of interest. Tomake linear and circular
models equivalent, I assume that β ∈ R

⋃
{∞}. There are also

some additional unknown parameters γ1, ξ ∈ Rp and π ∈ Rk. The
n × 2 matrix of errors [u, v2] consists of independent identically
distributed (i.i.d.) rows, and each row is normally distributed with
mean zero and a non-singular covariance matrix.
Without loss of generality, I assume that Z ′X = 0. If the or-

thogonality condition Z ′X = 0 is not satisfied, one can change
variables by considering Z̃ = (I − X(X ′X)−1X ′)Z instead of ini-
tial instruments. This will change the nuisance coefficient ξ to
ξ̃ = ξ + (X ′X)−1X ′Zπ .
I also consider a systemof two reduced formequations obtained

by substituting Eq. (2) into Eq. (1):

y1 = Zπβ + Xγ + v1; (3)
y2 = Zπ + Xξ + v2,

where γ = γ1 + ξβ; v1 = u + βv2. The reduced form errors
are assumed to be i.i.d. normal with zero mean and positive-
definite covariancematrixΩ . AssumeΩ to be known. The last two
assumptions will be relaxed in Section 6.
It is well-known that all optimal inference procedures depend

on the data only through sufficient statistics. So, without loss of
generality, we can concentrate our attention on a set of sufficient
statistics for coefficients (β, π):

ζ = (Ω−1/2 ⊗ (Z ′Z)−1/2Z ′) (y1, y2) =
(
ζ ′1, ζ

′

2

)′
.

Using these sufficient statistics, the simultaneous equationsmodel
(1) and (2) is reduced to the following which I will call a linear
model:

ζ ∼ N((Ω−1/2a)⊗ ((Z ′Z)1/2π), I2k), (4)

where a = (β, 1)′.
I also consider a circular model, which is a re-parametrization

of linearmodel (4) in spherical coordinates. FollowingChamberlain
(2005), let S i = {x ∈ Ri+1 : ‖x‖ = 1} be an i-dimensional sphere
in Ri+1. Two elements x1 and x2 ∈ S1 are equivalent if x1 = x2 or
x1 = −x2. Let S1+ be the space of equivalence classes. Define vectors
φ = Ω−1/2a/‖Ω−1/2a‖ ∈ S1

+
, and ω = (Z ′Z)1/2π/‖(Z ′Z)1/2π‖ ∈

Sk−1 and a real number ρ = ‖Ω−1/2a‖ · ‖(Z ′Z)1/2π‖. Then the
circular model is given by

ζ ∼ N(ρφ ⊗ ω, I2k). (5)
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