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a b s t r a c t

A semiparametric multivariate fractionally cointegrated system is considered, integration orders possibly
being unknown and I(0) unobservable inputs having nonparametric spectral density. Two estimates of
the vector of cointegrating parameters ν are considered. One involves inverse spectral weighting and the
other is unweighted but uses a spectral estimate at frequency zero. Both corresponding Wald statistics
for testing linear restrictions on ν are shown to have a standard null χ2 limit distribution under quite
general conditions. Notably, this outcome is irrespective of whether cointegrating relations are ‘‘strong’’
(when the difference between integration orders of observables and cointegrating errors exceeds 1/2), or
‘‘weak’’ (when that difference is less than 1/2), or when both cases are involved. Finite-sample properties
are examined in a Monte Carlo study and an empirical example is presented.
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1. Introduction

Semiparametric modelling has become popular in cointegra-
tion analysis of I(1) time series with I(0) cointegrating errors.
In the simplest parametric setting, observables follow a random
walk and cointegrating errors are serially uncorrelated. Vector au-
toregressive (VAR) extensions have been developed (e.g. Johansen,
1991), but optimal inference on the unknown cointegrating rela-
tions loses validity if the VAR order is under-specified, or if the
process lies outside the VAR class. Phillips and Hansen (1990) and
Phillips (1991a) and others showed that one can do as well allow-
ing the I(0) inputs to have nonparametric autocorrelation, under
suitable conditions on the bandwidth employed in the smoothed
nonparametric spectrum estimate.
Another source of possible misspecification is the basic

I(1)/I(0) framework itself. Recently, optimal inference has devel-
oped in a fractional setting (see e.g. Jeganathan, 1999; Robinson
andHualde, 2003). Here, integration orderswere allowed to be un-
known, to non-trivially generalize the I(1)/I(0) assumption, but
theory was developed only in a fully parametric setting, incur-
ring the familiar concern about misspecification, and just for a bi-
variate situation, hence avoiding the complexity in simultaneously
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dealingwithmultiple cointegrating relationswhere integration or-
ders of errors may differ. Dolado and Marmol (1996) and Kim and
Phillips (2000) allowed nonparametric autocorrelation in I(0) in-
puts but, respectively assuming knowledge of integration orders,
and proposing sub-optimal procedures.
The present paper develops inference on cointegrating relations

in a semiparametric fractional setting, with unknown integration
orders. To describe our model, we introduce the following
definitions corresponding to ones in Robinson and Hualde (2003)
(hereafter RH). For any scalar or vector sequence vt , t = 0,±1,
. . . , we denote

v#t = vt1(t > 0),

where 1(·) is the indicator function. Defining the difference
operator ∆ = 1 − L, where L is the lag operator, the fractional
difference operator is given formally, for any real α, α 6= −1,−2,
. . . , by

∆−α =

∞∑
j=0

aj(α)Lj, aj(α) =
0(j+ α)

0(α)0(j+ 1)
,

with 0 denoting the gamma function. Denoting by ait the ith
component of an arbitrary vector process at , we say that a scalar
process ζt is integrated of order d, ζt ∼ I(d), if for any l×1 (l <∞)
covariance stationary process ξt whose spectral density matrix is
continuous and nonsingular at all frequencies,

ζt =

l∑
k=1

∆−dkξ#kt , (1)
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for d = max1≤k≤l dk. Robinson and Gerolimetto (2006) refer to
each summand of (1) as ‘‘basic fractional’’, so our I(d) process, like
theirs, is a linear combination of ‘‘basic fractional’’ processes, with
maximal order d. We say that a vector process is I(d) if at least
one of its components is I(d), the rest having integration orders no
greater than d. This definition is identical to that of Hualde (2008)
and resembles that of Johansen (2008), which allows I(d) vectors
to have individual components of smaller order than d.
For any r0 × 1 vector d = (d1, . . . , dr0)

′, the prime denoting
transposition, denote ∆(d) = diag

{
∆d1 , . . . ,∆dr0

}
. Let ut , t =

0,±1, . . . , be an r0×1 covariance stationary unobservable process
with zero mean and nonparametric spectral density matrix f (λ),
given by

E(u0u′j) =
∫ π

−π

eijλf (λ)dλ,

that is at least continuous and nonsingular at all frequencies. For a
r0× r0 nonsingular matrixΥ and a r0×1 possibly unknown vector
δ = (δ1, . . . , δr0)

′, we define the r0 × 1 vector observable process
zt , t = 0,±1, by

Υ zt = ∆−1(δ)u#t , (2)

where, without loss of generality we set

0 ≤ δ1 ≤ δ2 ≤ · · · ≤ δr0 , (3)

which implies zt ∼ I(δr0). We exclude antipersistent processes
(having negative integration order), which seem to have limited
economic relevance, except in an over-differencing context.
The system (2) is the general framework in which we will

discuss the cointegrating properties of zt . We say that a vector
ξt ∼ I(d) is cointegrated if there exists a vector α 6= 0
such that α′ξt ∼ I(c) with c < d. This definition covers the
standard notion of cointegration where the observables share the
same integration order (as in, e.g., Engle and Granger, 1987), but
also many others, where observables with different integration
orders might combine in the cointegrating relation. The definition
is identical to that in Hualde (2008), which is similar to that of
Johansen (1996), andmore general than those in Flores and Szafarz
(1996) and Robinson and Yajima (2002) or Robinson andMarinucci
(2003).
The system (2) is very general, but unless δ and Υ are further

restricted, it does not necessarily represent a cointegrated model
and moreover, is nonidentifiable. As will be seen in Section 2,
additional restrictions on δ and Υ are motivated by the particular
cointegrating structurewhich characterizes our observables. Apart
from other possible constraints, we will assume in all cases that Υ
is upper-triangular with 1’s in themain diagonal. We justify below
that there is no loss of generality in this restriction, especially in
connection to (3). As a very relevant improvement over existing
literature we do not assume that all observables share the same
integration order (unlike, e.g., Kim and Phillips, 2000; Chen and
Hurvich, 2003, 2006; and effectively also Robinson and Yajima,
2002), although this possibility is considered and materializes if
the last column of Υ −1 contains no zeroes. In addition, we allow
the orders of the cointegrating errors to possibly vary, unlike
in the standard cointegration literature where all these orders
are assumed zero. We will deal with the case of an arbitrary
cointegrating rank (that is the number of linearly independent
cointegrating vectors) r1 ∈ {1, . . . , r0−1}, but our results are new
even if r1 = 1, for any r0 ≥ 2. Given there are no prior restrictions
on f , thosewhichwill be imposed onΥ and δ ensure identification,
and imply that (given consistent estimates of Υ and δ) consistent
estimation of f is possible, which is fundamental to our approach.
The truncation in (2) is motivated by systems where at least

δr0 falls in the nonstationary region, δr0 > 1/2. This version of
fractional integration (‘‘Type II’’ process) and cointegration accords

with that in RH. An alternative one (‘‘Type I’’ process), for which
the procedures developed below nevertheless apply, was used
by Dolado and Marmol (1996), Jeganathan (1999) and Kim and
Phillips (2000). None of these references covers δr0 within the
stationary region, δr0 ∈ (0, 1/2), which will be permitted by our
setting; in this case we say that our relations display ‘‘stationary
cointegration’’. This arose in Robinson (1994a), and it has been
stressed in a finance context by Bandi and Perron (2004) and
Christensen and Nielsen (2006). A larger class (where δr0 > 1/2
is possible) consists of cases where the cointegrating gap (the
difference between the integration order of the observables
and cointegrating error) falls in the (0, 1/2) region, which we
denote ‘‘weak cointegration’’. Empirical evidence of this, with
nonstationary observables, was found by Robinson and Marinucci
(2003), and it has been further discussed by Hualde and Robinson
(2007). The case where the gap is greater than 1/2, which includes
the usual I(1)/I(0) situation, is called ‘‘strong cointegration’’.
It is desired to conduct inference on the unknown elements

of Υ , in the presence of unknown δ. The present paper does not
merely extend nontrivially the bivariate model in RH to a richer
multivariate framework, and allow also for nonparametric f , but
simultaneously covers relations of weak and strong cointegration,
which, as we understand, has not been attempted before. While
asymptotics for point estimates of unknown parameters in Υ dif-
fer significantly across these cases, the same rules of inference
prevail throughout, with the same Wald test statistic (for a linear
hypothesis on these parameters) having a null limit χ2 distribu-
tion. The borderline situation between strong and weak cointe-
gration, with a cointegrating gap of 1/2, will be excluded largely
because it seems too special to warrant the space necessary to
present the somewhat separate technical treatment that it would
require. However, while the convergence rate of our estimates dif-
fers from those under both strong andweak cointegration, it seems
that the same limit distribution for theWald statistic will still hold,
so that slight limitation of our analysis can be dispensed with.
We find it convenient to treat the nonparametric autocorre-

lation in the frequency domain. This prompts consideration of
two alternative methods of estimating and testing hypotheses on
ν. One involves a ratio of weighted periodogram averages either
across all frequencies in the Nyquist band, or only over those
within a shrinking neighbourhood of zero frequency. The weight-
ing is inverse with respect to smoothed estimates of f . Because of
the concentration of spectral mass around zero frequency, where
f changes little, computationally simpler statistics, with the same
asymptotic properties, replace the weights by multiplicative fac-
tors based on an estimate of f (0).
The plan of the paper is as follows. In Section 2 additional re-

strictions on δ andΥ and estimates of the cointegratingmatrix and
test statistics will be introduced. Regularity conditions and asymp-
totic properties are presented in Section 3. Section 4 contains a
Monte Carlo study of finite-sample behaviour, and Section 5, the
analysis of an empirical example. Some concluding remarks are
made in Section 6. Proofs are relegated to an Appendix.

2. Estimation of cointegrating parameters and test statistics

As previously mentioned, we need to introduce additional
restrictions onΥ , δ, which ensure cointegration and identification,
and then propose estimates of the unrestricted parameters in Υ .
Our basic assumption (which materializes in Assumption 1) is
that the cointegrating properties of zt are characterized by the
following structure. First, S(1)r1 ⊂ Rr0 represents the cointegrating
space of dimension r1 < r0. This implies the existence of a full rank
r0×r1matrixβ(1) (whose columns are cointegrating vectors) such
that β(1)′zt ∼ I(δr1), with δr1 < δr0 . Hualde (2008) shows that δr1
is uniquely identified, in the sense that for any other arbitrary r0×
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