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a b s t r a c t

We consider questions of efficiency and redundancy in the GMM estimation problem in which we have
two sets of moment conditions, where two sets of parameters enter into one set of moment conditions,
while only one set of parameters enters into the other.We then apply these results to a selectivity problem
in which the first set of moment conditions is for the model of interest, and the second set of moment
conditions is for the selection process. We use these results to explain the counterintuitive result in the
literature that, under an ignorability assumption that justifies GMM with weighted moment conditions,
weighting using estimated probabilities of selection is better than weighting using the true probabilities.
We also consider estimation under an exogeneity of selection assumption such that both the unweighted
and the weighted moment conditions are valid, and we show that when weighting is not needed for
consistency, it is also not useful for efficiency.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

This paper is motivated by a puzzle in the missing data
(selectivity) literature. Consider the setting of a GMM problem
is which we have a set of moment conditions, with some
parameters θ1 (the ‘‘parameters of interest’’), and these moment
conditions hold in the unselected sample. However, we also have
a selection mechanism such that the moment conditions do not
hold in the selected sample. Under certain assumptions given
below (typically referred to as ‘‘ignorability’’ or ‘‘selection on
observables’’), weighting the original moment conditions by the
inverse of the probability of selection yields a modified set of
moment conditions that do hold in the selected sample. We will
follow Wooldridge (2002b, 2007) in calling the estimator based
on these weighted moment conditions the ‘‘inverse probability
weighting’’ (IPW) estimator.
Unless the probability of selection is known for each selected

observation, implementation of the IPW estimator will require a
model for the probability of selection. Let θ2 be the parameters (the
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‘‘selection parameters’’) in the moment conditions derived from
this model. Typically these moment conditions will be based on
the score function from the likelihood function for the selection
process. A two-step IPW procedure can be considered, in which
the first step is the estimation of θ2 from the selection model,
and the second step is the estimation of θ1 by GMM on the
weighted moment conditions, where the weighting is done using
the estimated probabilities of selection.
In this setting, the puzzle is that it is better to estimate the

selection probabilities than to use the true selection probabilities,
even if the latter are known. In other words, in terms of the
augmented model described above, we get a better estimator of θ1
when we use the estimated θ2 in the second step than if we used
the true θ2. This phenomenon has been discussed by Wooldridge
(1999, 2001, 2002b, 2007), and it has also been noted in a
number of previous works, including Pierce (1982), Rosenbaum
(1987), Imbens (1992), Robins et al. (1992), Robins and Rotnitzky
(1995), Hirano et al. (2003), Henmi and Eguchi (2004) and Hitomi
et al. (2008). This is puzzling because knowledge of θ2, if properly
exploited, cannot be harmful.
To resolve this puzzle, we follow Newey and McFadden (1994)

in setting up an augmented set of moment conditions, where the
first subset are the weighted original moment conditions, which
now contain both θ1 and θ2, and the second subset are themoment
conditions from the selection model, which contain only θ2. We
show that the second set of moment conditions is useful (non-
redundant), evenwhen θ2 is known. This is true because the second
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set of moment conditions is correlated with the first set in the
selected sample (even though it is not in the full sample). So
the inefficiency of the estimator based on known θ2 and the first
set of moment conditions only is due to its failure to exploit the
information in the second set of moment conditions; whereas,
when θ2 is not known, there is no choice but to include the second
set of moment conditions.
This raises the question of whether, when θ2 is known, we can

improve on the two-step estimator (which uses estimated θ2 in
the second step) by using a GMM estimator based on both sets
of moment conditions, but where only θ1 is estimated. After all,
this GMM estimator cannot be worse than the two-step estimator
of θ1. The answer to this question is a bit complicated. In the
case that the original GMM problem (the one that contains the
parameter of interest) is overidentified, the two-step estimator is
dominated by a one-step estimator that estimates θ1 and θ2 jointly
in the augmented GMM model. However, we show that, in the
augmented GMM model, knowledge of θ2 is redundant (does not
improve the precision of estimation of θ1). So, while it can never
hurt to knowmore, if that knowledge is used properly, in this case
it does not help either.
The result just quoted is given in Section 3 of the paper. In

Section 2, we set the stage by giving a number of results on
efficiency and redundancy of estimation in a general GMM setting,
when one set of moment conditions depends on θ1 and θ2, while
a second set of moment conditions depends only on θ2. Some
of these results are original and interesting in their own right.
We consider ‘‘m-redundancy’’, which is redundancy of moment
conditions in the sense of Breusch et al. (1999), and we also
consider ‘‘p-redundancy’’, which is a term we propose to refer
to redundancy of the knowledge of some of the parameters for
estimation of the other parameters. One of our results gives an
interesting connection between these two concepts: the first set of
moment conditions with θ1 known is m-redundant for estimation
of θ2 if and only if knowledge of θ2 is p-redundant for estimation
of θ1.
In Section 4 of the paper we reconsider the selectivity model

under a stronger ‘‘exogeneity of selection’’ assumption under
which both the unweighted moment conditions and the weighted
moment conditions hold in the selected population. Wooldridge
(2001) has shown that in this circumstance it is better to use
the unweighted moment conditions than the weighted moment
conditions. However, this does not rule out the possibility that
it would be better to use both. We show that, given exogeneity
of selection, the optimal moment conditions in the selected
population are the same as in the unselected population. If
weighting was not part of the efficient estimation problem in the
unselected sample, it also plays no role in the selected sample.
In this sense, when we do not have to weight for reasons of
consistency,we also do not have toweight for reasons of efficiency.
GMM is sufficiently general to accommodate most of the ex-

tremum and minimum distance estimators in econometrics (see,
e.g., Newey and McFadden (1994), p. 2118). The arguments we
present can be applied, for example, to (Q)MLE, M-estimation,
WLS, and NLS. They also extend to the asymptotic equivalents of
GMM such as empirical likelihood and exponential tilting estima-
tors. Hence, our results apply quite generally. Specifically, they re-
late to the treatment effect estimation literature (e.g., Rosenbaum
and Rubin (1983) and Heckman et al. (1998)), to the stratified-
sampling literature (e.g., Manski and Lerman (1977), Manski and
McFadden (1981), Cosslett (1981a,b), Imbens (1992) and Tripathi
(2003)) and other similarly-structured problems (e.g., Hellerstein
and Imbens (1999), Nevo (2002, 2003) and Crepon et al. (1997)).
Also, our results of Section 2 apply to a number of other settings in
which two-step estimators arise, including the generated regres-
sors of Pagan (1984), the latent variables models of Zellner (1970)
and Goldberger (1972), andmany others. However, we do not con-
sider semiparametric estimation of the selection model (‘‘propen-
sity score’’), as in Hahn (1998) or Hirano et al. (2003).

2. Efficiency and redundancy results for the general estimation
problem

2.1. Preliminaries

Consider a random vector w∗ ∈ M∗ ⊂ Rdim(w
∗), the compact

setΘ = Θ1 ×Θ2 ⊂ Rp1 × Rp2 , and the population condition

E[h(w∗, θ)] = 0, (1)

where h : M∗ × Θ → Rm is a vector of known real-valued
moment functions. Under regularity conditions, Hansen (1982) es-
tablished consistency and asymptotic normality of the generalized
method of moments (GMM) estimator that minimizes a squared
Euclidean distance of the random sample analogues of the popu-
lation moments, h̄(θ) = 1

n

∑n
i=1 h(w

∗

i , θ), from their population
counterparts equal to zero. Thus, the GMM estimator θ̂ minimizes
the objective function

h̄(θ)′Ω̂ h̄(θ), (2)

where Ω̂ converges in probability toΩ , the appropriate (optimal)
positive semidefinite weighting matrix.
For simplicity, we assume here thatw∗i , i = 1, . . . , n, are i.i.d.
The following regularity assumptions on themoment functions

are sufficiently strong to ensure both consistency and asymptotic
normality of the GMM estimator.

Assumption 2.1. Let ‖·‖ denote the Euclidean norm,B(θ, δ) ⊂ Θ
denote an open p1 + p2-ball of radius δ with center at θ , ∇θh(·, θ)
denote them× (p1 + p2) Jacobian of h(·, θ)with respect to θ , and
‘‘w.p.1’’ stand for ‘‘with probability one’’. Assume that the moment
function in (1) satisfies the following conditions:

(i) ∃ unique θo ∈ int(Θ) that solves (1);
(ii) h(w∗, θ) is continuous at each θ ∈ Θ w.p.1;
(iii) h(w∗, θ) is (once) continuously differentiable on B(θo, δ) for

some δ > 0 w.p.1;
(iv) E{supθ∈Θ ‖h(w∗, θ)‖2} <∞;
(v) E{supθ∈B(θo,δ) ‖∇θh(w

∗, θ)‖} <∞ for some δ > 0;
(vi) E[∇θh(w∗, θo)] is of full column rank.

Then it is a standard result (see, e.g., Newey and McFadden
(1994), Theorems 2.6 and 3.4) that, under Assumption 2.1, the
GMM estimator of θ is consistent and asymptotically normal.

2.2. The general estimation problem

Suppose that we can partition θ into subsets of parameters
(θ ′1, θ

′

2)
′ and h(·) into subsets of functions (h1(·)′, h2(·)′)′. If we

suppressw∗ for notational convenience, we can write

E[h1(θ1, θ2)] = 0, (A)
E[h2(θ2)] = 0, (B) (3)

where θ1 ∈ Θ1, θ2 ∈ Θ2, h1(·) and h2(·) are m1- and m2-vectors
of known functions, respectively (m = m1 +m2). We consider the
general case of overidentification, i.e.,m1 ≥ p1 andm2 ≥ p2. These
identification conditions (plus the corresponding rank conditions
assumed below) ensure that θ2 is identified by (B) alone, and that,
given θ2, θ1 is identified by (A) alone, so that two-step estimation
is possible.
The optimal weighting matrix for GMM will be the inverse of

the following covariance matrix or its components:

C = V[h(θ)] =
[
C11 C12
C21 C22

]
, (4)
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