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a b s t r a c t

This paper applies the minimax regret criterion to choice between two treatments conditional on
observation of a finite sample. The analysis is based on exact small sample regret and does not use
asymptotic approximations or finite-sample bounds. Core results are: (i) Minimax regret treatment rules
are well approximated by empirical success rules in many cases, but differ from them significantly –
both in terms of how the rules look and in terms of maximal regret incurred – for small sample sizes
and certain sample designs. (ii) Absent prior cross-covariate restrictions on treatment outcomes, they
prescribe inference that is completely separate across covariates, leading to no-data rules as the support
of a covariate grows. I conclude by offering an assessment of these results.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, the minimax regret criterion is used to analyze
choice between two treatments based on a sample of subjects
that have been exposed to one treatment each. This problem was
recently analyzed by Manski (2004). The difference to Manski’s
approach is technical: I consider several extensions and, more
importantly, base the analysis entirely on exact small sample
regret as opposed to large deviation bounds. This adjustment
qualitatively affects substantive results. It also illustrates the
potential for closed-form small sample analysis in problems of this
type.
Minimax regret as a criterion for treatment choice has recently

attracted renewed interest (Brock, 2006; Eozenou et al., 2006;
Hirano and Porter, 2008;Manski, 2004, 2005, 2006, 2007a,b, 2008;
Schlag, 2006; Stoye, 2007a, 2009). Unfortunately, derivation of
finite sample minimax regret decision rules appears extremely
hard. As a result, most of the existing literature either focuses on
identification and altogether abstracts from sampling uncertainty
(Brock, 2006; Manski, 2006, 2008; Stoye, 2007a), states the
finite sample problem without attempting to solve it (Manski,
2007a, Section 4), derives bounds on finite sample regret (Manski,
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2004), or estimates minimax regret treatment rules (Manski
(2007a,b); Stoye (2009)). To my knowledge, the only exact results
for finite samples so far are found in relatedwork by Canner (1970)
and Schlag (2006), in Manski’s (2007a Section 5) analysis of a case
that he calls ‘‘curiously simple’’, and in his brute force numerical
analysis of the setup considered in Proposition 1(iii) (2005, chapter
3).1
One important agenda of this paper is, therefore, to show that

much can be learned from exact finite sample analysis. On a
substantive level, perhaps themost interesting finding is that some
conclusions refine those of Manski (2004) in ways that might be
considered surprising, or even controversial. The results also allow
one to improve numerical analyses presented inManski (2004) and
to gauge the similarity of small-sample decision problems to limit
experiments as in Hirano and Porter (2008).
The paper is structured as follows. After setting up the notation

and explainingminimax regret, I analyze treatment choicewithout
covariates, differentiating the analysis depending on whether one
or both treatments are unknown, and in the latter case, how
treatments were assigned to sample subjects. In some cases,
the minimax regret rules are similar to empirical success rules
(i.e. simple comparisons of sample means) although significant
differences are uncovered as well. Minimax regret decision rules
are generally quite different from those informed by classical
statistics.

1 Results that are subsequent to earlier versions of this paper are acknowledged
in the conclusion.
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The analysis is then extended to the situation where treatment
outcomes may depend on a covariate X . This is a central concern
in Manski (2004). The core result here may be the most surprising
one, and refines Manski’s (2004) finding in a way that overturns
its interpretation. Specifically, in the setting considered by Manski
(2004) and here, minimax regret completely separates inference
across covariates for any sample size, leading to no-data rules
as the support of a covariate grows large. This result will be
established in Section 4 of the paper. Section 5 concludes with
reflections on some interesting features of the results. All proofs
are collected in an Appendix. A web Appendix on the author’s
homepage contains additional numerical results, including exact
counterparts of bounding analyses in Manski (2004).

2. Setting the stage

2.1. The decision problem

The decision problem is as in Manski (2004), and notation is
largely his, with slight modifications to align it with the literature
on (statistical) decision theory. A decision maker has to assign
one of two treatments T ∈ {0, 1} to members j of a treatment
population J . Each member of the treatment population has a
response function yj(t) : {0, 1} → [0, 1] that maps treatments
onto outcomes. Substantively, I therefore assume that a priori
bounds on treatment outcomes exist, are known, and coincide
across treatments; restricting them to lie in [0, 1] is then a
normalization. The population is a probability space (J,Σ, P) and
is ‘‘large’’ in the sense that J is uncountable and P(j) = 0 for
all j. The decision maker cannot distinguish between members of
J , hence from her point of view, assigning treatment t induces
a random variable Yt (the potential outcome) with distribution
P(yj(t)). (Covariates will be introduced later.)
It will be instrumental to focus on the distribution P(Y0, Y1) as

unknown quantity. Specifically, P(Y0, Y1) will be identified with
a state of the world s, and the set S will collect all states of the
world that are considered feasible. I will analyze both a situation
of complete ignorance and the problem of testing an innovation, in
which the behavior of treatment 0 is well understood. Formally,
complete ignorance means that S = ∆[0, 1]2, the set of
distributions over [0, 1]2; testing an innovation means that S ={
Q (Y0, Y1) ∈ ∆[0, 1]2 : Q (Y0) = P(Y0)

}
, where P(Y0) is known.

Further restrictions on potential outcome distributions could be
imposed by restricting S; such analysis is undertaken in ongoing
work.
If s were known, the decision maker would face a decision

problem under risk. Assume that she would resolve this problem
by maximizing expected outcome, thus she would assign all
subjects to T = 1 if µ1 > µ0, to T = 0 if µ1 < µ0, and she
would be indifferent if µ0 = µ1, where µt ≡ EYt . This does
not presume risk neutrality because Yt might be a utility; it does,
however, presume a utilitarian social welfare function.
The decision maker observes treatment outcomes experienced

by a random sample of N members of the treatment population.
This statistical experiment generates a sample space Ω ≡

({0, 1} × [0, 1])N with typical element ω = (tn, yn)Nn=1. The
sampling distribution of T depends on the sample design, and
different such designs will be considered. Conditional on a
realization tn, yn is an independent realization of Ytn and, therefore,
informative about s.
Treatment choice may condition on the outcome of the

statistical experiment. Thus, the decision maker can specify a
statistical treatment rule δ : Ω 7→ [0, 1] that maps possible sample
realizations ω onto treatment assignments δ(ω) ∈ [0, 1], where
the value of δ is interpreted as probability of assigning treatment
1. In words, δ(ω) specifies the probability with which treatment

1 will be assigned to members of the treatment population if the
sample is ω. Nonrandomized decision rules take values only in
{0, 1}, but randomization is allowed and will be used. The set of
all decision rules will be denoted byD .
The expected outcome generated by δ given s is

u(δ, s) ≡ µ0 (1− Eδ(ω))+ µ1Eδ(ω),

i.e. an average ofµ0 andµ1, weighted according to the probability
that treatment 1 will be assigned. Seen as a function of s, u(δ, s)
is (the negative of) the risk function of treatment rule δ. If s
were known, the decision problem would be easy – the decision
maker would, by assumption, use the no-data rule that assigns the
better treatment independently of ω. But with s unknown, one
now encounters a decision problem under ambiguity: Different
treatment rules will be best for different states s, and there is no
obvious probability distribution according towhich different states
should be weighted.2

Many decision criteria have been suggested for this situation.
The two most prominent ones are the Bayesian approach, i.e. to
place a subjective distribution on S and then rank decision rules
by the according expectation of u(δ, s), and maximin utility, i.e. to
rank decision rules according to mins∈S u(δ, s). In contrast to
either, I follow Manski (2004) and other aforecited references and
evaluate treatment rules by their minimax regret. To understand
this criterion, first define the regret incurred by decision rule δ in
state s,

R(δ, s) ≡ max
d∈D

u(d, s)− u(δ, s),

the difference between the expected outcome induced by δ and
the outcome that could have been achieved if s had been known.
A minimax regret decision maker will minimize this quantity over
all possible states, i.e. she will pick

δ∗ ∈ argmin
δ∈D
max
s∈S
R(δ, s). (1)

Minimax regret was originally introduced by Savage’s (1951)
reading ofWald (1950). Its recent reconsideration in the treatment
choice literature is due to Manski (2004); see also Berger (1985,
chapter 5) for a statistician’s discussion. An in-depth historical
as well as axiomatic discussion of minimax regret is found in
Stoye (2007b); see also Hayashi (2008) and Stoye (2007c). Readers
who are interested in extensive motivations of minimax regret are
referred to this literature. Three brief remarks are as follows:

• Minimax regret has in common with maximin utility that it
avoids the explicit use of priors. Whether this is an advantage
or a weakness is a judgment call that will be avoided here. It
is worth noting, though, that minimax regret implicitly selects
a prior, hence one could think of it as a prior selection device
motivated by a specific notion of uniform quality of decisions.
• Minimax regret differs markedly from maximin utility by
fulfilling the von Neumann–Morgenstern independence axiom.
At the same time, it is menu dependent: Adding decision rules
toD can affect the relative ranking of previously available ones,
intuitively because it can alter the benchmark against which
regret is evaluated.

2 This problem was connected to the literature on ambiguity by Manski (2000).
Except for a difference in labels, the risk function (interpreted as function of s) is
the expected utility functional u◦f from Stoye’s (2007b) axiomatization ofmaximin
utility andminimax regret aswell as Gilboa and Schmeidler’s (1989) axiomatization
of multiple prior maximin utility.
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