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a b s t r a c t

The goal of this article is to develop a flexible Bayesian analysis of regression models for continuous and
categorical outcomes. In the models we study, covariate (or regression) effects are modeled additively
by cubic splines, and the error distribution (that of the latent outcomes in the case of categorical data)
is modeled as a Dirichlet process mixture. We employ a relatively unexplored but attractive basis in
which the spline coefficients are the unknown function ordinates at the knots. We exploit this feature
to develop a proper prior distribution on the coefficients that involves the first and second differences
of the ordinates, quantities about which one may have prior knowledge. We also discuss the problem
of comparing models with different numbers of knots or different error distributions through marginal
likelihoods and Bayes factors which are computed within the framework of Chib (1995) as extended to
DPMmodels by Basu and Chib (2003). The techniques are illustrated with simulated and real data.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Our objective in this article is to specify and estimate
flexible Bayesian regressionmodels for continuous and categorical
outcomes. By flexible we mean models that are relatively free of
assumptions about the functional forms through which covariates
affect the response and of assumptions about the distribution
of the unobserved error or, in the case of categorical outcomes,
the distribution of the underlying latent data. Flexibility in the
choice of such assumptions is especially desirable in fields such as
biostatistics and the social sciences, where theory rarely provides
guidance either about the form of the covariate effects, other than
the presumption that the effects are smooth in the covariates, or
about the error distribution.
The regression function has been modeled in several ways

(see, for example, O’Hagan (1978); Angers and Delampady (1992);
Müller et al. (1996); Chipman et al. (1997); Clyde et al. (1998);
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Vannucci and Corradi (1999)). In this article, we assume that
the regression function is additive with each function of the
covariates modeled as a cubic spline (for example, Härdle, 1990;
Green and Silverman, 1994; Pagan and Ullah, 1999; Li and Racine,
2006). In this approach, it is necessary to specify a set of basis
functions for the cubic spline. In the practice to date (for example,
Congdon, 2007, chap. 4; Denison et al., 2002; Ruppert et al.,
2003, chap. 16) attention has been restricted to the truncated
power series basis and polynomial B-spline basis. In each case,
the parameters of the basis functions have no easy interpretation.
From the Bayesian viewpoint, the lack of interpretability of the
coefficients is inconvenient because it hinders the construction
of proper prior distributions that can be motivated by defensible
a priori reasoning. The common strategy of specifying improper
or default prior distributions is not satisfactory if the goal is to
compare alternative non-parametric formulations through such
formal means as marginal likelihoods and Bayes factors.
One innovation of this article is in the use of a relatively

unexplored basis in which the spline coefficients have the
attractive feature of being the unknown function ordinates at the
knots.We exploit this feature to develop a proper prior distribution
on the coefficients that involves the first and second differences
of the ordinates, quantities about which one may be expected to
have some prior knowledge. We also indicate how a simulation-
based approach can be used to specify the hyperparameters of our
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prior distribution. The basis we employ is described in Lancaster
and Šalkauskas (1986, secs. 3.7 and 4.2). We, henceforth, refer to
it as the LS basis. This basis is mentioned briefly by Wood (2006,
Sec. 4.1.2) in relation to cubic regression splines, but it is not used in
the computations. Other bases parameterized in terms of ordinate
values appear in Poirier (1973) and Green and Silverman (1994),
but without any connection to Bayesian problems or to the issues
that concern us in this article.
In the spline literature, the error distribution is usually

assumed to be parametric, especially when the outcome is not
continuous. In ordinal models, which we use as the running
example for categorical outcomes, the model is almost always
specified with logit or probit links. One of our goals is to
show that it is not difficult to move beyond such parametric
assumptions. In our development, we assume that the distribution
of the error is an unknown parameter that we model as a
Dirichlet process mixture (DPM). The DPM is a general family of
prior distributions on probability measures that was introduced
by Ferguson (1973) and Antoniak (1974) and has found many
applications in statistics and econometrics. Some of the early uses
of this specification in economics are Tiwari et al. (1988), Hirano
(2002), and Chib and Hamilton (2002). In modeling the error
distribution for continuous outcomes,we assume that, conditioned
on an unknown location and variance, the error distribution is
normal. We then assume that the location and variance of this
normal distribution have an unknown distribution that is modeled
as a Dirichlet process, leading to an error distribution that is an
arbitrary location–variance mixture of normal distributions. A key
property of this DPM specification, established by Ferguson (1983),
is that it is capable of approximating any unknown distribution.
An alternative approach, which we do not pursue, could involve
the weightedmixtures of Dirichlet processes (Dunson et al., 2007).
For ordinal outcomes, where the ordered category probabilities are
defined in terms of an increasing sequence of cut-points, we invoke
a version of the DPM model in which mixing occurs only over the
variance parameter because in that case the unknown location is
confounded with the cut-points.
An important characteristic of our models is that they are easy

to understand and estimate. The models can be expressed in the
form of a linear regression for observed outcomes in the case
of continuous outcomes and for latent outcomes in the case of
ordinal outcomes. The predictors in these regressions are derived
from the data on the underlying covariate and our basis functions
for the cubic spline. The coefficients are the unknown function
ordinates at the various knots. The derivative of each functionwith
respect to its covariate is easily calculated. As far as estimation is
concerned, the posterior distribution of the model parameters and
other unknowns can be summarized by relatively straightforward
Markov chain Monte Carlo (MCMC) methods. For continuous
outcomes, conditioned on the parameters of the DPM process, the
set-up is similar to a Gaussian heteroskedastic regression model,
which simplifies several sampling steps. Similarly, conditioned
on all the other unknowns and the data, the sampling of the
DPM parameters is done according to the methods of Escobar and
West (1995) and MacEachern and Müller (1998). The fitting is
completed by steps inwhich the unknown smoothness parameters
are sampled. The MCMC sampling algorithm for the ordinal model
is similar in the latent variable framework of Albert and Chib
(1993). It differs from the continuous model because the posterior
distribution includes the cut-points and the latent variables that
are introduced to model the ordinal outcomes.
A major focus of our work is on the comparison of different

versions of our models (defined, for example, by alternative
covariates, fewer or additional knots, or parametric assumptions
about the error distribution). For this purpose, we discuss the
computation ofmarginal likelihoods and Bayes factors.We provide

algorithms for computing the marginal likelihood for both the
continuous and ordinal models within the framework of Chib
(1995) as extended to DPMmodels by Basu and Chib (2003). These
algorithms are not complicated and require virtually the same code
that is used in the fitting of the models.
Our article can be viewed as a contribution to an emerging lit-

erature on flexible Bayesian regressionmodels. For instance, Leslie
et al. (2007) pursue similar objectives but in the context of re-
gression splines and with a different basis than ours. The article
does not consider the question of the prior on the spline coeffi-
cients or the computation of the marginal likelihood. Griffin and
Steel (2007) analyze a new Dirichlet process regression smoother
in which the functional form for the covariate structure is centered
over a class of regression models rather than taking the form of a
spline. Finally, Geweke and Keane (2007) and Villani et al. (2007)
consider a Bayesian regression model in which the error distri-
bution is modeled by a discrete mixture of normal variables. The
mean function in the former is modeled by general quadratic, cu-
bic, and quartic polynomials in two covariates, while splines are
used in the latter. These two articles primarily focus on time se-
ries problems and do not tackle the question of Bayes factors for
model comparisons. None of these four contributions extend their
methods to models of ordinal outcomes.
The rest of the article is organized as follows. In Section 2, we

present the basic models. Section 3 contains the cubic spline basis
for modeling the unknown covariate functions and introduces
the identifying restrictions. We specify the prior distribution for
the parameters in Section 4 and, in Section 5, develop the prior-
posterior analyses of the models and show how the posterior
distribution of the unknowns can be summarized by MCMC
methods. The computation of themarginal likelihood is considered
in Section 6. Section 7dealswith some special cases. Exampleswith
simulated and real data are contained in Section 8. Section 9 has
our conclusions.

2. Models

2.1. Continuous outcomes

Assume that yi is the ith observation in a sample of n
observations y = (y1, . . . , yn) and that the model generating yi
depends on a k0-vector of covariates xi0, consisting of an intercept
and nominal variables, and q additional covariates wi1, . . . , wiq.
Now, let

yi = x′i0β0 + g1(wi1)+ · · · + gq(wiq)+ εi, i ≤ n, (2.1)

where the gj(·)(j ≤ q) are unknown functions, and the error εi is
independent of the covariates. Thus, in this model, the covariates
xi0 are assumed to have a parametric effect on the expected value
of the response, and the wij are assumed to enter the model
nonparametrically.
The distribution of the error is assumed to be a DPM. Although

other non-parametric formulations of the error distributions are
possible, the DPM specification has the strengths of being both
parsimonious and tractable. Formally, conditioned on an unknown
location µi and positive variance σ 2i , we assume that the error
distribution is normal N

(
µi, σ

2
i

)
. We then suppose that φi =

(µi, σ
2
i ) has an unknown probabilitymeasure G over ((−∞,∞)×

(0,∞),B ×B+), where the prior on G is given by the Dirichlet
process (Ferguson, 1973)with concentration parameterα and base
distributionG0. Marginalized overφi andG, it follows that the error
distribution is an arbitrary location–variance mixture of normal
distributions. In particular, we assume that

εi|φi ∼ N
(
µi, σ

2
i

)
φi|G ∼ G
G ∼ DP(αG0),
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