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a b s t r a c t

The Beveridge–Nelson (BN) decomposition is a model-based method for decomposing time series
into permanent and transitory components. When constructed from an ARIMA model, it is closely
related to decompositions based on unobserved components (UC) models with random walk trends and
covariance stationary cycles. The decomposition when extended to I(2) models can also be related to
non-model-based signal extraction filters such as the HP filter. We show that the BN decomposition
provides information on the correlation between the permanent and transitory shocks in a certain class
of UC models. The correlation between components is known to determine the smoothed estimates
of components from UC models. The BN decomposition can also be used to evaluate the efficacy of
alternative methods. We also demonstrate, contrary to popular belief, that the BN decomposition can
produce smooth cycles if the reduced form forecasting model is appropriately specified.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The Beveridge–Nelson (BN) decomposition is a model-based
method for decomposing a univariate or multivariate time series
into permanent and transitory (PT) components. It defines the
stochastic trend as the limiting forecast of the level of the
series minus any deterministic components given the current
information set. The permanent component is a pure random
walk while the remaining movements in the series are the I(0)
transitory component. Other than the random walk trend, the BN
decomposition does not make assumptions about the structure
of the components and the correlations between them. However,
it is closely related to decompositions based on unobserved
components (UC)models with randomwalk trends and covariance
stationary cycles. The BNdecomposition can also be related to non-
model-based signal extraction filters such as the Hodrick–Prescott
(HP) filter and other Butterworth lowpass filters considered
byGomez (2001). These lattermethods are indirectly related to the
BN decomposition through their relationships with UC models.
In this paper, we study the BN decomposition when ARIMA

models are used as the forecast function. Our contribution is
to clarify the relationship between the BN decomposition and
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other univariate detrending methods popular in economics. In
particular, for certain I(1) and I(2) models we describe the
relationship between the BN decomposition and UC models with
correlatedpermanent and transitory shocks.We clarify underwhat
conditions the correlation between shocks is identified. For our
application to US real GDP, the correlation between components
is identified up to a set within the parameter space. If the value of
the correlation is within this set, the real-time or filtered estimates
of trend and cycle from a UC model will be equivalent to the BN
decomposition. We also demonstrate how the BN decomposition
can be used as a benchmark to test the over-identifying restrictions
that are commonly made in applied macroeconomics research.
Examining the over-identifying restrictions can help applied
researchers understand the implications that these assumptions
have on the decomposition. Many of these results have been stated
previously in the literature and part of our contribution is to
present these results in a consistent manner.
The BN decomposition holds less relevance for researchers who

believe that the trend is not a pure random walk. Consequently,
our analysis is limited to models with random walk trend
components. There also exist other types of PT decompositions in
which the permanent component is an integrated series but not
a pure random walk. These include the canonical decomposition
of Hillmer and Tiao (1982) and the general PT decompositions
of Quah (1992), but these are outside the scope of this paper. As
emphasized by Quah (1992), the randomwalk trend implicit in the
BN decomposition maximizes the importance of the permanent
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component. This should always be recognized when interpreting
the results of the BN decomposition.
In the following, we begin by presenting the BN decomposition

of an I(1)process. Thenwediscuss the relationship between theBN
decomposition for ARIMA(p,1,q) models and different UC models.
We extend this to I(2) processes in Section 2.We conclude with an
application to US real GDP which emphasizes key points from our
previous analysis.

2. The BN decomposition of an I(1) process

Assume that the univariate time series yt is an I(1) process with
Wold representation given by

∆yt = µ+ ψ(L)εt = µ+
∞∑
j=0

ψjεt−j, (1)

where ∆ = 1 − L, ψ(0) = 1, ψ(1) 6= 0,
∑
∞

j=0 j
1/2
|ψj| < ∞, and

εt are iid(0, σ 2) one-step-ahead forecast errors. The permanent
component or trend τt of the BN decomposition of yt is defined
as the limiting forecast minus any deterministic components

τ BNt = limJ→∞
E[yt+J − Jµ|Ωt ], (2)

whereΩt represents conditioning information available at time t .
Writing yt+J = yt+∆yt+1+· · ·+∆yt+J and using E[∆yt+j|Ωt ] (j =
1, . . . , J) based on (1) allow for the analytic evaluation of τ BNt as

τ BNt = µ+ τ
BN
t−1 + ψ(1)εt . (3)

Hence, the BN trend is a pure random walk with drift µ and has
innovation variance σ 2ψ(1)2. The transitory component or cycle,
cBNt , is defined as the difference between yt and the BN trend

cBNt = yt − τ
BN
t = ψ̃(L)εt , (4)

where ψ̃(L) =
∑
∞

j=0 ψ̃jL
j and ψ̃j = −

∑
∞

k=j+1 ψk. Solo (1989)
showed that the 12 -summability of ψ(L) and the uniqueness of
the Wold decomposition guarantee the existence and uniqueness
of the BN decomposition. From (3) and (4) it is clear that the
BN decomposition produces real-time or one-sided estimates of
the permanent and transitory components at time t .
An alternative derivation of the BN decomposition follows

directly from the factorization ψ(L) = ψ(1) + (1 − L)ψ̃(L). Then
(1) may be rewritten as

∆yt = µ+ ψ(1)εt + (1− L)ψ̃(L)εt , (5)

which identifies (µ+ ψ(1)εt) /(1 − L) as the permanent compo-
nent and ψ̃(L)εt as the transitory component.
In practice, the BN decomposition can be computed in a number

of ways. Typically, it is assumed that ∆yt follows an ARMA(p, q)
process so that ψ(L) = θ(L)/φ(L) where the orders of φ(L) and
θ(L) are p and q, respectively, and the roots of φ(L) = 0 and
θ(L) = 0 are assumed to lie outside the complex unit circle.
A brute force approach is based on estimating an ARMA(p, q)
model for ∆yt , using these estimates to compute an estimate
of ψ(1) = θ(1)/φ(1), and then forming estimates of the
components using (2) and (4) with the ARMA residuals in place
of εt . Cuddington and Winters (1987), Miller (1988) and Newbold
(1990) provided improvements to this brute force method.
These methods are valid if the forecasting model for ∆yt is a
univariate ARMA(p, q) model. Ariño andNewbold (1998) extended
the algorithm of Newbold (1990) to multivariate forecasting
models for ∆yt . Evans and Reichlin (1994) also discussed the BN
decomposition for multivariate models. Recently, Morley (2002)
provided a very simple state-space approach for calculating the BN
decomposition that is valid for any forecasting model for∆yt that
can be cast into state-space form. In particular, suppose∆yt −µ is

a linear combination of the elements of them× 1 state vector αt
∆yt − µ = z′αt ,
where z is an m × 1 vector with fixed elements. Suppose further
that
αt = Tαt−1 + ηt , ηt ∼ iid N(0,Q), (6)
such that all of the eigenvalues of T have modulus less than unity,
and Im − T is invertible. Then, Morley (2002) showed that

τ BNt = yt + z′T(Im − T)−1αt|t , (7)

cBNt = yt − τ
BN
t = −z

′T(Im − T)−1αt|t ,
where αt|t = E[αt |Ωt ] denotes the filtered or real-time estimate
of αt from the Kalman filter.1 An important advantage of Morley’s
approach is its generality. It works the sameway for univariate and
multivariate forecasting models for∆yt .
Disadvantages of the methods described above to compute the

BN decomposition are that they lose the first observation due
to differencing the data, and that they do not provide standard
error bands for the extracted trend and cycle estimates. However,
as discussed by Morley et al. (2003) (MNZ) and Anderson et al.
(2006) and shown in Section 3, the BN decomposition may also be
computed directly using the Kalman filter from certain UCmodels.
This allows for the use of all the data and for the calculation of
standard error bands for the extracted trend and cycle. This also
allows for the extraction of trend and cycle estimates at time t
using information in the full sample,ΩT .

3. The BN decomposition and unobserved components models

The BN decomposition produces a decomposition into perma-
nent and transitory components with minimal assumptions about
the structure of the components. The definition of the BN trend (2)
identifies the permanent component as a pure random walk, and
this result can be used to link the BN decomposition with tradi-
tional UC models with random walk trends. The following subsec-
tions describe the class of UC models that are consistent with the
BN decomposition. Throughout, we assume that∆yt has a reduced
form covariance stationary and invertible ARMA(p, q) representa-
tion such that ψ(L) = θ(L)/φ(L) in (1).

3.1. Single-source-of-error model

The definitions of the BNpermanent and transitory components
in (3) and (4) suggest the following single-source-of-error (SSOE)
state-space representation2

yt = τt + ct , (8)
(1− L)τt = µ+ ψ(1)εt ,

ct = ψ̃(L)εt ,

where ψ̃(L)εt ∼ ARMA(p, n) with n = max(q − 1, 0). It is clear
from (8) that the innovations to the permanent and transitory
components are perfectly correlated

ρ =
cov(ψ(1)εt , ψ̃(0)εt)√
var(ψ(1)εt)var(ψ̃(0)εt)

=
ψ(1)ψ̃(0)

|ψ(1)ψ̃(0)|
= −1 or 1,

where the sign of ρ depends on the sign of ψ̃(0). Hence,
there always exists a UC representation with perfectly correlated
shocks that is consistent with the BN decomposition. However,
as discussed by MNZ, Eq. (8) is not the only UC representation
that is consistent with the BN decomposition. We note that Ord
et al. (1997) advocated the use of SSOE UCmodels because they do

1 Throughout the paper we refer to filtered estimates as real-time estimates
based on information only available at time t , and smoothed estimates as final
estimates based on all available sample information.
2 Anderson et al. (2006) gave a slightly different, but equivalent, formulation of

the SSOE model that includes εt in the measurement equation.
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