
Nonparametric statistical formulations for structural health monitoring

Vincent Z. Wang a,⇑,1, K.C.G. Ong b

a School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811, Australia
b Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore

a r t i c l e i n f o

Article history:
Received 10 January 2013
Accepted 1 October 2014
Available online 9 December 2014

Keywords:
Structural health monitoring
Nonparametric statistics
Time series analysis
Spectral analysis
Methodology

a b s t r a c t

This paper presents a group of nonparametric statistical formulations for structural health monitoring
(SHM). Vibration response data are first represented by the coefficients of a series of fitted autoregressive
(AR) models in the time domain or by the averages of binned power spectral density (PSD) estimates in
the frequency domain. Three types of statistical hypotheses are then formulated and tested by nonpara-
metric techniques to monitor these characteristics. Specifically, two-sample Kolmogorov–Smirnov test,
Mann–Whitney test, and Mood test are used in this study. For each type of hypothesis formulation, a
function of the resulting P-values is used to define a damage indicator profile (DIP) whereby damage
locations are identified. The highlight of these formulations is that, due to their nonparametric nature,
they do not require a particular functional form for the probability distribution of the underlying popu-
lation of an extracted vibration response data characteristic. Two numerically simulated case studies, i.e.,
a 20-degree-of-freedom system and a hyperbolic paraboloid roof shell, demonstrate the efficacy of the
proposed nonparametric SHM formulations. Multiple damage locations are also considered in the case
studies.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The challenges of improving structural safety have been stimu-
lating continuous interest among civil engineering researchers to
further the state of the art in the related areas of design, construc-
tion, inspection and retrofitting techniques. Particularly, the last
several years have seen rapid research development in vibration-
based structural health monitoring (SHM) [1,2]. This is partially
due to its more effective performance compared with conventional
methods such as visual inspection and its automatic nature in
implementation, which make it suitable for various complicated
applications along with sophisticated computing hardware. Over
the years a large variety of SHM schemes have been proposed. Sal-
awu [3] reviewed the damage detection methods using modal fre-
quencies. Methods based on mode shapes [4,5], frequency
response functions (FRFs) [6], flexibility [7,8], optimization algo-
rithms [9], as well as advanced signal processing techniques
[10–12] were also developed. Correspondingly, a range of structure
types have been investigated, including frames [13–15], bridges
[16–19], wind turbines [20,21], a masonry wall [22], and a

full-scale retrofitted building [23]. Detailed reviews of the relevant
literature were documented by Doebling et al. [24], Carden and
Fanning [25], and Chan and Thambiratnam [2].

Recently, there have been increasing research efforts to address
the SHM issues from a probabilistic and statistical point of view.
Vanik et al. [26] formulated a Bayesian probabilistic SHM approach
based on the probabilistic model updating scheme developed by
Beck and Katafygiotis [27] and Katafygiotis and Beck [28]. Nair
et al. [29] proposed a statistical damage detection and locating
algorithm where time series models are fitted to develop a dam-
age-sensitive data characteristic and the related damage locating
indices. The differences in the means of the damage-sensitive data
characteristics are checked by invoking t-test. Giraldo et al. [30]
constructed a statistical SHM scheme whereby varying environ-
mental conditions can be allowed for. Nair and Kiremidjian [31]
addressed the SHM issues by Gaussian mixture models (GMMs).
A multivariate statistical approach has more recently been
designed by Wang and Ong [32] in which both time- and fre-
quency-domain data can be utilized. Other relevant work includes
Worden et al. [33], Kullaa [34], Lam et al. [35], Casciati [36], Posen-
ato et al. [37], Lanata and Schoefs [38], and Döhler et al. [39].

The continued research efforts among the SHM community have
been yielding a variety of damage-sensitive vibration response data
characteristics with either deterministic or stochastic nature. This
wide family of vibration response data characteristics provides
the flexibility in selecting appropriate ones for various application
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scenarios, i.e., different structures, damage types, response data
available, etc. It, on the other hand, brings the challenges for the
applicability of subsequent statistical analyses. For instance, it is
not uncommon that the samples involved in a statistical SHM
scheme are assumed to be taken from a population having a normal
distribution. Thus this SHM scheme might not be applicable to the
vibration response data characteristics constructed based on a pop-
ulation severely deviating from normality. More generally, for a sta-
tistical SHM scheme sensitive to a parametric-statistical-model
requirement to work properly, the involved random variables need
to actually have the assumed probability distribution, or at least
must not be significantly different from it. It follows that a nonpara-
metric statistical SHM scheme would be preferable in the sense
that, besides having the capacity of explicitly addressing the
involved uncertainty as a parametric scheme does, a nonparametric
one does not need to specify functional forms for the probability
distributions of the populations based on which the vibration
response data characteristics are obtained. Accordingly, an attempt

is made in this study to formulate a nonparametric statistical SHM
framework. In the following sections, the formulations of the pro-
posed framework are presented, along with two case studies to
demonstrate its efficacy.

2. Formulations of the nonparametric statistical SHM
framework

2.1. Extracting the damage-sensitive vibration response data
characteristics: time- and frequency-domain representations

For the structure being monitored, the state in which the struc-
ture is undamaged or the state which is deemed to be a benchmark
for the subsequent states to be compared with may be defined as
the reference state. The state wherein the structural condition
needs to be investigated is labeled as the current state. In the
dynamic testing, excitation forces are generated by Gaussian white
noise processes, and the structure is instrumented with accelerom-

Nomenclature

Ac, Ar acceleration time histories in the current state, and
those in the reference state

B backward shift operator
cai, rai acceleration time history at the ith output DOF in the

current state, and that in the reference state
DI, DII, DIII DIPs based on Formulations I, II, and III, respectively
FcZjl
ð�Þ; F rZjl

ð�Þ CDFs of cZjl and rZjl, respectively
f equally-spaced frequencies corresponding to estimated

PSDs
fs sampling frequency for the acceleration time histories
gI(�), gII(�), gIII(�) predefined functions for DIPs based on Formula-

tions I, II, and III, respectively
H0, H1 null hypothesis and alternative hypothesis, respectively
Ic, Ir number of data points in each acceleration time history

in the current state, and that in the reference state
Mc, Mr number of time windows for each acceleration time his-

tory in the current state, and that in the reference state
M0c, M0r number of time windows for each acceleration time his-

tory in the current state, and that in the reference state
for AR model based formulation

M00c , M00r number of time windows for each acceleration time his-
tory in the current state, and that in the reference state
for PSD estimate based formulation

m number of entries in f, rSkj, or cSkj

m1, m2 sequence number of the entry in rSkj (or cSkj) taken as
the first entry in rS0kj (or cS0kj), and that for the last entry
in rS

0
kj (or cS0kj)

N number of PSD-estimate data points in each frequency
bin

n number of output DOFs
IPjl, IIPjl, IIIPjl P-values of the hypothesis tests based on rzkjl and

czkjl, respectively corresponding to Formulations I, II,
and III

p generic symbol for p0 and p00

p0 order of the AR models fitted to the data points in the
time windows

p00 number of frequency bins used to partition a PSD esti-
mate

Sc, Sr estimated PSDs in the current state, and those in the ref-
erence state

cSkj, rSkj estimated PSDs based on the data points in the kth time
window of the acceleration time history at the jth out-
put DOF in the current state, and those in the reference
state

cS0kj, rS
0
kj estimated PSDs corresponding to the frequency range of

interest based on the data points in the kth time win-
dow of the acceleration time history at the jth output
DOF in the current state, and those in the reference state

cSkj, rSkj average of the PSD-estimate data points based on the
data points in the kth time window of the acceleration
time history at the jth output DOF in the current state,
and that in the reference state

cSkjl, rSkjl average of the PSD-estimate data points in the lth fre-
quency bin based on the data points in the kth time
window of the acceleration time history at the jth out-
put DOF in the current state, and that in the reference
state

s0 number of data points in each time window for AR mod-
el based formulation

s00 number of data points in each time window for PSD
estimate based formulation

cZjl, rZjl populations from which czkjl and rzkjl are taken, respec-
tively

czkjl, rzkjl lth data point of the vibration response data character-
istic based on the data points in the kth time window
of the acceleration time history at the jth output DOF
in the current state, and that in the reference state

ceij, reij realizations of white noise processes with zero means in
the current state, and those in the reference state

gI, gII, gIII

parameter vectors in gI(�), gII(�), and gIII(�), respectively
hjl shift parameter in Formulation II hypotheses, or scale

factor in Formulation III hypotheses
l mean of the underlying random process corresponding

to the acceleration data points in a time window
cUkj(�), rUkj(�) function of B used to define AR models in the cur-

rent state, and that in the reference state
c/kjl, r/kjl lth coefficient of the AR model fitted to the data points

in the kth time window of the acceleration time history
at the jth output DOF in the current state, and that in the
reference state
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