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a b s t r a c t

This paper studies functional coefficient regression models with nonstationary time series data, allowing
also for stationary covariates. A local linear fitting scheme is developed to estimate the coefficient
functions. The asymptotic distributions of the estimators are obtained, showing different convergence
rates for the stationary and nonstationary covariates. A two-stage approach is proposed to achieve
estimation optimality in the sense ofminimizing the asymptoticmean squared error.When the coefficient
function is a function of a nonstationary variable, the new findings are that the asymptotic bias of its
nonparametric estimator is the same as the stationary covariate case but convergence rate differs, and
further, the asymptotic distribution is a mixed normal, associated with the local time of a standard
Brownian motion. The asymptotic behavior at boundaries is also investigated.
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1. Introduction

Nonparametric estimation techniques offer numerous advan-
tages relative to parametric techniques, due mainly to their flexi-
bility and robustness to functional formmisspecification, and have
been embraced by applied researchers in social, behavioral and
economic sciences. Asymptotic theory underlying nonparametric
estimators and test statistics for many commonly usedmodels has
been well established for independent and identically distributed
(iid) data as well as for weakly dependence data. However, little is
known about the behavior with nonstationary (in particular, inte-
grated with order one, denoted by I(1)) data, which have predomi-
nately beenmodeled linearly. The early nonparametric asymptotic
analyses with nonstationary data include Phillips and Park (1998),
Park and Hahn (1999), Chang and Martinez-Chombo (2003) and
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Juhl (2005). Phillips and Park (1998) and Juhl (2005) considered
nonparametric estimation of regressionmodelswhen the true data
generating process is a linear unit root process, while the others
considered the models linearized in the nonstationary variables.
More recently,1Wang and Phillips (forthcoming, 2008) considered
nonparametric estimation of a regression model with an I(1) re-
gressor and Xiao (forthcoming) considered a varying coefficient
modelwith I(1) regressors appearing in the parametric component
of themodel. Finally, Karlsen et al. (2007) considered nonparamet-
ric estimation of a regressionmodel for a different (amore general)
type of nonstationary processes, a subclass of the class of null re-
current Markov chains.
In this paper,we tackle amore general set-up for a class of semi-

parametricmodelswith non-stationary covariates. Specifically, we
focus on the popular varying coefficient regression model with
some nonstationary covariates

Yt = β(Zt)T Xt + εt , 1 ≤ t ≤ n, (1.1)

where Yt , Zt and εt are scalar, Xt = (Xt1, . . . , Xtd)T is a vector
of covariates with dimension d, β(·) is a d × 1 column vector
function, and the superscript T denotes transpose of a matrix. For
ease notation, we assume that Zt is univariate case. Extension
to multivariate Zt involves fundamentally no new ideas but

1 The first version of this paper was written independently of these recent works
on nonparametric estimation of regression models with non-stationary covariates.
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complicated notations. We observe (Yt , Xt , Zt) for t = 1, . . . , n.
When {(Xt , Zt , εt)} is stationary (denoted by I(0)) or iid, various
versions of (1.1) have been considered by many authors, including
but not limited to, for example, Chen and Tsay (1993), Hastie and
Tibshirani (1993), Cai et al. (2000), Li et al. (2002), and among
others. When εt is stationary and Zt = t , Eq. (1.1) has been tackled
by Robinson (1989, 1991), Cai (2007) and Chen andHong (2007) for
stationary Xt , by Park and Hahn (1999) and Chang and Martinez-
Chombo (2003) for nonstationary Xt , and by Cai and Wang (2008)
for nearly integrated Xt . When Xt = 1 and Zt is I(1), Eq. (1.1)
becomes a standard univariate nonparametric regressionmodel as
considered by Wang and Phillips (forthcoming, 2008) and Karlsen
et al. (2007). Finally, when Zt is I(0) and Xt is I(1), model (1.1)
reduces to the case considered by Xiao (forthcoming).
The advantage of a varying coefficient model specification,

compared with an unrestricted nonparametric regression, is that
it attenuates the ‘‘curse of dimensionality’’ problem. It also
includes many popular semiparametric models as special cases.
For example, when Xt contains a constant, say the first component
Xt1 = 1, we can write XTt = (1, X̃Tt ). Further, if the coefficient
vector associated with X̃t is a vector of constants, say γ , then
the varying coefficient model reduces to a partially linear model
E(Yt |Xt , Zt) = β1(Zt)+ X̃Tt γ ; see, e.g., Robinson (1988).
The remainder of the paper is organized as follows: Section 2

discusses the case when Zt is stationary. Here, local linear estima-
tors of coefficient functions are developed, and their asymptotic
properties are established. A two-step estimation procedure is also
proposed when some covariates are nonstationary and the rest are
stationary. Section 3 considers the case when Zt is nonstationary.
Nonparametric kernel smoothing of the coefficient functions is de-
veloped and its asymptotic behavior is investigated. Concluding re-
marks are presented in Section 4. Proofs of the main results of the
paper are given in two Appendices.

2. Models with stationary Zt

We consider first the case when some or all components of Xt
are I(1) and Zt is strictly stationary. For expositional simplicity, we
re-express (1.1) as the following varying coefficient model

Yt = β(Zt)T Xt + εt = β1(Zt)T Xt1 + β2(Zt)T Xt2 + εt ,
1 ≤ t ≤ n, (2.1)

where Xt1, Zt , and εt are stationary, Xt2 is an I(1) vector, β(Zt) =
(β1(Zt)T, β2(Zt)T)T, and Xt = (XTt1, X

T
t2)
T, where Xti is a di × 1

vector, i = 1, 2, d1 + d2 = d, and the first component of Xt1 is
identically one. In what follows, we assume that E(εt | Xt , Zt) = 0
which implies that Xt and Zt are uncorrelated with εt . Note that Yt
is allowed to be stationary or nonstationary. For example, model
(2.1) can be applied to the analysis of purchasing power of parity,
in which XTt2 = (Pt , P∗t , Et) (and no Xt1), where Pt and P

∗
t are

the price levels of the domestic and a foreign country, Et is the
exchange rate between the domestic and the foreign currencies,
and Zt = It − I∗t is the difference between the domestic interest
rate It and the foreign interest rate I∗t . Then if Yt is an I(0) variable,
we say that Pt , P∗t and Et are co-integratedwith a varying coefficient
co-integration vector β(Zt) which is a vector of smooth functions
of Zt . This setting is more general than the usual assumption that
β is a vector of constant parameters in the usual purchasing power
of parity analysis.

2.1. Local linear estimation

It is well known in the literature; see, e.g., Fan and Gijbels
(1996), that a local linear fitting has several nice properties,
over the classical Nadaraya–Watson (local constant) method, such
as high statistical efficiency in an asymptotic minimax sense,

design-adaptation, and automatic edge correction. We estimate
β(·) using a local linear fitting from observations {(Xt , Zt , Yt)}nt=1.
We assume throughout the paper that β(·) is twice continuously
differentiable, so that for any given grid point z, we use a local
approximation as β(z) + β(1)(z) (Zt − z) to approximate β(Zt),
where β(s)(z) = dsβ(z)/dzs. Define(
θ̂0
θ̂1

)
= argminθ0,θ1

n∑
t=1

[
Yt − θT0 Xt − (Zt − z) θ

T
1 Xt

]2
× Kh(Zt − z), (2.2)

where Kh(u) = h−1K(u/h), K(·) is a kernel function satisfying
Assumption A3 below, θ̂0 = β̂(z) estimates β(z), and θ̂1 = β̂(1)(z)
estimates β(1)(z). Then, β̂(z) and β̂(1)(z) can be expressed as(
β̂(z)
β̂(1)(z)

)
=

[
n∑
t=1

(
Xt

(Zt − z) Xt

)⊗2
Kh(Zt − z)

]−1

×

n∑
t=1

(
Xt

(Zt − z)Xt

)
Yt Kh(Zt − z), (2.3)

where A⊗2 = A AT (A⊗1 = A) for a vector or matrix A.

2.2. Notations and assumptions

Since Xt2 is a vector of I(1) processes, it can be re-expressed as
Xt2 = Xt−1,2 + ηt = X02 +

∑t
s=1 ηs (t ≥ 1), where {ηs} is an I(0)

process with mean zero and varianceΩη . Then,

X[nr]2
√
n
≡
Xt2
√
n
=
X0,2
√
n
+
1
√
n

t∑
s=1

ηs =
X0,2
√
n
+
1
√
n

[nr]∑
s=1

ηs,

where r = t/n and [x] denotes the integer part of x. Under
some regularity conditions, Donsker’s theorem; see, for example,
Theorems 14.1 and 19.2 in Billingsley (1999) for iid ηt and ρ-
mixing ηt , respectively, generalizes in an obvious way to the
multivariate cases and leads to

X[nr]2/
√
n H⇒ Wη,2(r) as n→∞, (2.4)

whereWη,2(·) is a d2-dimensional Brownianmotion on [0, 1]with
covariance matrixΣη and ‘‘H⇒’’ represents weak convergence. In
particular, it follows fromMerlevéde et al. (2006) that (2.4) holds if
{ηt} is a stationary strong (α-)mixing sequence satisfying, for some
δ0 > 0,

E|ηt |2+δ0 <∞, and
∞∑
k=1

k(2+δ0)/δ0 α(k) <∞, (2.5)

where α(·) is the mixing coefficient; see, e.g., Hall and Heyde
(1980) formore discussion onα-mixing process. Also, for any Borel
measurable and totally Lebesgue integrable function Γ (·), one has

1
n

n∑
t=1

Γ (X[nr]2/
√
n)

d
−→

∫ 1

0
Γ (Wη,2(s))ds as n→∞,

where
d
−→ denotes the convergence in distribution, so that, for

l = 1, 2,

1
n

n∑
t=1

(
Xt2/
√
n
)⊗l d
−→

∫ 1

0
[Wη,2(r)]⊗ldr ≡ W

(l)
η,2 as n→∞;

(2.6)

see Theorem 1.2 in Berkes and Horváth (2006) for details. Under
stronger regularity conditions, (2.4) can be strengthened to the
following strong approximation result

sup
0≤r≤1

‖X[nr]2/
√
n−Wη,2(r)‖ = O(n−θ∗ logλ∗(n)) (2.7)
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